Skip to main content
Log in

Dynamic modelling of slip in a wind turbine spherical roller main bearing

Dynamische Modellierung von Schlupf bei Windturbinen Pendelrollen-Hauptlager

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

This paper considers the problem of the dynamic modelling of macro slip in spherical roller bearings. By revisiting the fundamental physics which drive these systems, potential issues in existing models have been identified. Furthermore, in pure rolling conditions it was found that governing differential equations become “stiff”, requiring the use of implicit methods of time integration. The problem of individual roller macro slip in a wind turbine main bearing is then investigated using a simplified representation of system dynamics. Model results indicate clear links between slip/friction and the operational strategy of the wind turbine, as well as significantly higher frictional effects in the downwind main bearing row. Due to modelling simplifications, these results should not yet be considered conclusive, with further work required.

Zusammenfassung

Dieser Beitrag befasst sich mit dem Problem der Dynamischen Modellierung des Makroschlupfs in Pendelrollenlagern. Durch eine Überprüfung der grundlegenden physikalischen Zusammenhänge, die diese Systeme antreiben, wurden potenzielle Probleme in bestehenden Modellen identifiziert. Darüber hinaus wurde festgestellt, dass die maßgeblichen Differentialgleichungen unter reinen Rollbedingungen „steif“ werden, was den Einsatz impliziter Methoden der Zeitintegration erfordert. Das Problem des Makroschlupfes einzelner Rollen in einem Hauptlager einer Windturbine wird dann anhand einer vereinfachten Darstellung der Systemdynamik untersucht. Die Modellergebnisse zeigen klare Zusammenhänge zwischen Schlupf/Reibung und der Betriebsstrategie der Windkraftanlage sowie deutlich höhere Reibungseffekte in der windabgewandten Hauptlagerreihe. Aufgrund von Vereinfachungen der Modellierung sollten diese Ergebnisse noch nicht als abschließend betrachtet werden; weitere Arbeiten sind erforderlich.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. More specifically, \(\mathbf{L}_{\text{CoM}}\) is the angular momentum (relative to \(\mathcal{O})\) of a point mass with mass equal to that of the rigid body, and with position and velocity equal to the body centre-of-mass at each point in time.

  2. An example of such an orbit being that of our tidally-locked moon.

  3. The benefit of this being that at “pure rolling” the orbital speed becomes a simple function of shaft speed, similar to a gear-speed equation [13, 17].

References

  1. Bergua Archeli R, Keller J, Bankestrom O, Dunn M, Guo Y, Key A, Young E (2021) Up-tower investigation of main bearing cage slip and loads. Tech. rep. National Renewable Energy Lab.(NREL), Golden

    Book  Google Scholar 

  2. Brizmer V, Stadler K, van Drogen M, Han B, Matta C, Piras E (2017) The tribological performance of black oxide coating in rolling/sliding contacts. Tribol Trans 60(3):557–574

    Article  Google Scholar 

  3. Crook A (1961) The lubrication of rollers III. A theoretical discussion of friction and the temperatures in the oil film. Philos Trans Royal Soc Lond Ser A Math Phys Sci 254(1040):237–258

    Google Scholar 

  4. Doll G (2022) Surface engineering in wind turbine tribology. Surface and coatings technology, p 128545

    Google Scholar 

  5. Gould B, Greco A (2015) The influence of sliding and contact severity on the generation of white etching cracks. Tribol Lett 60(2):1–13

    Article  Google Scholar 

  6. Gould B, Greco A (2016) Investigating the process of white etching crack initiation in bearing steel. Tribol Lett 62(2):1–14

    Article  Google Scholar 

  7. Greco A, Demas N, Erck R, Gould B, Keller J, Sheng S, Guo Y (2022) Wind turbine drivetrain reliability. Tech. Rep. PR–5000–84029. National Renewable Energy Lab.(NREL), Golden (https://www.nrel.gov/docs/fy23osti/84029.pdf)

    Book  Google Scholar 

  8. Guo Y, Keller J (2020) Validation of combined analytical methods to predict slip in cylindrical roller bearings. Tribol Int 148:106–347

    Article  Google Scholar 

  9. Guo Y, Bankestrom O, Bergua R, Keller J, Dunn M (2021) Investigation of main bearing operating conditions in a three-point mount wind turbine drivetrain. Forsch Ingenieurwes 85(2):405–415

    Article  Google Scholar 

  10. Guo Y, Thomson A, Bergua R, Bankestrom O, Erskine J, Keller J (2022) Acoustic emission measurement of a wind turbine main bearing. Tech. rep. National Renewable Energy Lab.(NREL), Golden

    Book  Google Scholar 

  11. Han Q, Chu F (2015) Nonlinear dynamic model for skidding behavior of angular contact ball bearings. J Sound Vib 354:219–235

    Article  Google Scholar 

  12. Han Q, Li X, Chu F (2018) Skidding behavior of cylindrical roller bearings under time-variable load conditions. Int J Mech Sci 135:203–214

    Article  Google Scholar 

  13. Hart E (2020) Developing a systematic approach to the analysis of time-varying main bearing loads for wind turbines. Wind Energy 23(12):2150–2165

    Article  Google Scholar 

  14. Hart E, Turnbull A, Feuchtwang J, McMillan D, Golysheva E, Elliott R (2019) Wind turbine main-bearing loading and wind field characteristics. Wind Energy 22(11):1534–1547

    Article  Google Scholar 

  15. Hart E, Clarke B, Nicholas G, Kazemi Amiri A, Stirling J, Carroll J, Dwyer-Joyce R, McDonald A, Long H (2020) A review of wind turbine main bearings: design, operation, modelling, damage mechanisms and fault detection. Wind Energy Sci 5(1):105–124

    Article  Google Scholar 

  16. Hart E, de Mello E, Dwyer-Joyce R (2022) Wind turbine main-bearing lubrication–part 1: an introductory review of elastohydrodynamic lubrication theory. Wind Energy Sci 7(3):1021–1042

    Article  Google Scholar 

  17. Hart E, de Mello E, Dwyer-Joyce R (2022) Wind turbine main-bearing lubrication–part 2: Simulation-based results for a double-row spherical roller main bearing in a 1.5 mw wind turbine. Wind Energy Sci 7(4):1533–1550

    Article  Google Scholar 

  18. Jain S, Hunt H (2011) A dynamic model to predict the occurrence of skidding in wind-turbine bearings. J Physics Conf Ser IOP Publ 305:12027

    Article  Google Scholar 

  19. Kotzalas MN, Doll GL (2010) Tribological advancements for reliable wind turbine performance. Philos Trans Royal Soc A: Math Phys Eng Sci 368(1929):4829–4850

    Article  Google Scholar 

  20. Liu Y, Chen Z, Tang L, Zhai W (2021) Skidding dynamic performance of rolling bearing with cage flexibility under accelerating conditions. Mech Syst Signal Process 150:107–257

    Article  Google Scholar 

  21. Masjedi M, Khonsari M (2012) Film thickness and asperity load formulas for line-contact elastohydrodynamic lubrication with provision for surface roughness. J Tribol 134(1):11503

    Article  Google Scholar 

  22. Nejad AR, Keller J, Guo Y, Sheng S, Polinder H, Watson S, Dong J, Qin Z, Ebrahimi A, Schelenz R et al (2022) Wind turbine drivetrains: state-of-the-art technologies and future development trends. Wind Energy Sci 7(1):387–411

    Article  Google Scholar 

  23. Rao A (2006) Dynamics of particles and rigid bodies: a systematic approach. Cambridge University Press, Cambridge

    Google Scholar 

  24. Tu W, Shao Y, Mechefske CK (2012) An analytical model to investigate skidding in rolling element bearings during acceleration. J Mech Sci Technol 26(8):2451–2458

    Article  Google Scholar 

  25. Vaes D, Guo Y, Tesini P, Keller JA (2019) Investigation of roller sliding in wind turbine gearbox high-speed-shaft bearings. Tech. rep. National Renewable Energy Lab.(NREL), Golden

    Book  Google Scholar 

  26. Wanner G, Hairer E (1996) Solving ordinary differential equations II vol 375. Springer, Berlin Heidelberg

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to Dr Tim Rogers (University of Sheffield) for helpful discussions which greatly supported this research. This work forms part of project AMBERS (Advancing Main-BEaRing Science for wind and tidal turbines). Elisha de Mello’s PhD project is funded by the Powertrain Research Hub, co-funded by the Offshore Renewable Energy Catapult. Edward Hart is funded by a Brunel Fellowship from the Royal Commission for the Exhibition of 1851. This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisha de Mello.

Appendix

Appendix

1.1 Stiff differential equation example

 

Fig. 6
figure 6

Example of instability in the highly loaded zone when using Euler’s method (red). Backward Euler (black) can be seen to avoid this instability issue

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Mello, E., Hart, E., Guo, Y. et al. Dynamic modelling of slip in a wind turbine spherical roller main bearing. Forsch Ingenieurwes 87, 297–307 (2023). https://doi.org/10.1007/s10010-023-00652-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-023-00652-z

Navigation