Skip to main content
Log in

Hardness prediction after case hardening and tempering gears as first step for a local load carrying capacity concept

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

In recent years the problem of case hardened gear failure due to crack initiation below the surface and its prediction has been addressed thoroughly. However, the main factor in terms of load-carrying capacity, namely the hardness and residual stresses are either considered rudimentarily by analytical functions or within very complex finite element codes.

Commercially available software such as the FVA Workbench is limited to standard calculations according to the DIN 3990 or ISO 6336 and mainly focuses on the loading aspect. Heat treatment tools such as HT-Tools, CarbTool© or SimCarb mainly focus on the carburizing process without modelling the quenching process for the hardness predictions.

The model being presented within this paper focuses on calculating the hardness depth profile for spur (straight/helical) or bevel gears considering all physical aspects of the carburizing and quenching process. The thermodynamically-based diffusion and phase transformation models allow heat specific chemical compositions to be considered. The hardness reduction due to tempering has been derived from quality assurance data in order to level out varying tempering temperatures used during production. Considering gear specific aspects in both the carburizing and quenching simulation allow very good predictions which have been validated up to module 10 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. DIN 50100:2015-11: Load controlled fatigue testing – Execution and evaluation of cyclic tests at constant load amplitudes on metallic specimens and components

  2. Mughrabi H (2006) Specific features and mechanisms of fatigue in the ultrahigh-cycle regime. Int J Fatigue 28:1501–1508

    Article  MATH  Google Scholar 

  3. Murakami Y (2002) Metal Fatigue: effects of small defects and nonmetallic inclusions. Elsevier, Amsterdam

    Google Scholar 

  4. Diemar A (2007) Simulation des Einsatzhärtens und Abschätzung der Dauerfestigkeit einsatzgehärteter Bauteile. Dissertation, Bauhaus-University Weimar

    Google Scholar 

  5. Hoffmann F (2012) Steigerung der Dauerfestigkeit von Einsatzstählen durch Carbonitrieren, AiF-Vorschungsvorhaben 16176, IWT Bremen

    Google Scholar 

  6. Crank J (1975) The Mathematics of Diffusion. Clarendon Press, Oxford

    MATH  Google Scholar 

  7. Gegner J (2006) Komplexe Diffusionsprozesse in Metallen. expert Verlag, Renningen

    Google Scholar 

  8. Rowan OK, Sisson RD (2009) No. 3. Effect of Alloy Composition on Carburizing Performance of steel, Journal of Phase Equilibria and Diffusion, vol. 30., pp 235–241

    Google Scholar 

  9. Karabelchtchikova O (2007) Fundamentals of Mass Transfer in Gas Carburizing. Phd Thesis, Worcest Polytech Institute

  10. Collin R, Gunnarson S, Thulin D (1972) Influence of reaction rate on gas carburizing of steel in a CO-H2-CO2-H2O-CH4-N2 atmosphere. Journal of the Iron and Steel Institute, London, pp 777–784

    Google Scholar 

  11. Edenhofer B (1995) Technology, advantages and applications of direct-feed atmospheres for carburizing. Heat Treat Met 3:55–60

  12. Gao W, Kong L, Long JM, Hodgson PD (2009) Measurement of the mass transfer coefficient at workpiece surfaces in heat treatment furnaces. J Mater Process Technol 209:497–505

    Article  Google Scholar 

  13. AWT-Fachausschuss 4 (2014) Thermochemische Behandlung von Eisenwerkstoffen im Gas. expert Verlag, Renningen

  14. Babu SS, Bhadeshia HKDH (1995) Diffusion of carbon in substitutionally alloyed austenite. J Mater Sci Lett 14:314–316

    Article  Google Scholar 

  15. Simsir C, Gür CH (2008) A FEM based framework for simulation of thermal treatments: Application to steel quenching. Comput Mater Sci 44:588–600

    Article  Google Scholar 

  16. Kirkaldy JS, Thomson BA, Baganis EA (1977) In: Steel, Doane DV, Kirkaldy JS (eds) Hardenability Concepts with Applications to. AIME, New York, NY, pp 82–125

    Google Scholar 

  17. Li MV, Niebuhr DV, Meekisho LL, Atteridge DG (1998) A Computational Model for the Prediction of Steel Hardenability, Metallurgical and Materials Transactions B. Volume 29B:661–672

    Google Scholar 

  18. Hashiguchi K, Kirkaldy JS, Fukuzumi T, Pavaskar V (1984) Prediction of the Equilibrium, Paraequilibrium and Non-Partition Local Equilibrium Phase Diagrams for Multicomponent Fe-C Base Alloys. CALPHAD 8(2):173–186

    Article  Google Scholar 

  19. Bhadeshia HKDH (1980) The Thermodynamics of Steels: the carbon-carbon interaction energy. Met Sci 14:230–232

    Article  Google Scholar 

  20. Bhadeshia HKDH, Edmonds DV (1980) The mechanism of Bainite Formation in Steels. Acta Metall 28:1265–1273

    Article  Google Scholar 

  21. Bhadeshia HKDH (1981) The Driving Force for Martensitic Transformation in Steels. Met Sci 15:175–177

    Article  Google Scholar 

  22. Bhadeshia HKDH (1981) Thermodynamic Extrapolation and the Martensite-Start Temperature of Substitutionally Alloyed Steels. Met Sci 15:178–180

    Article  Google Scholar 

  23. Maynier JD, Bastien P (1978) In: Steels, Doane DV, Kirkaldy JS (eds) Hardenability Concepts with Applications to. AIME, New York, NY, pp 518–544

    Google Scholar 

  24. Trebst S (2002) Untersuchung des Einflusses der Kernhärte auf die Zahnfußdauerfestigkeit von einsatzgehärteten Stirnrädern und numerische Berechnung von Kernhärteverteilungen durch Simulation der Wärmebehandlung. Dissertation, RWTH Aachen

    Google Scholar 

  25. Ferro P, Bonollo F (2014) Modelling of the carburizing and quenching process applied to caterpillar track bushings. Model Simul Mater Sci Eng 22:15pp

    Article  Google Scholar 

  26. Steinbacher M (2009) Großprobe – Vergleichbarkeit von Couponproben und Großzahnrad beim Einsatzhärten. Heft, vol. 885. FVA, Frankfurt

    Google Scholar 

  27. Richter F (1983) b.H. Physikalische Eigenschaften von Stählen und ihre Temperaturabhängigkeit, Stahleisen-Sonderbericht, vol. 10. Verlag Stahleisen m, Düsseldorf

    Google Scholar 

  28. Trapp N (2010) Methoden und Strategien zur Simulation der Wärmebehandlung komplexer Bauteile aus 20MnCr5. Dissertation, KIT

    Google Scholar 

  29. Strauß T (2013) Ermittlung von fertigungsprozessbedingten Eigenspannungen bei komplexer Bauteilgeometrie. Dissertation, KIT

    Google Scholar 

  30. Medeiros do Nasciment R (2012) Alternative Einsatzstähle und deren Aufkohlverhalten, Sonderbände der Praktische. Metallographie, vol. 44., pp 217–222

  31. DIN EN 10084:2008-06: Case hardening steels – Technical delivery conditions

Download references

Acknowledgements

The authors gratefully acknowledge Jannick Kuhn for his fundamental contribution during his B.Sc. thesis by implementing the phase transformation model and the quality assurance team for providing hardness measurements for validation purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Schwenk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwenk, M., Hoffmeister, J. & Hermes, J. Hardness prediction after case hardening and tempering gears as first step for a local load carrying capacity concept. Forsch Ingenieurwes 81, 233–243 (2017). https://doi.org/10.1007/s10010-017-0247-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-017-0247-8

Navigation