Skip to main content
Log in

Bending strength of oil-lubricated cylindrical plastic gears

Modified bending strength calculation based on VDI 2736

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

Oil-lubricated plastic gears enable significantly higher power transmission compared to dry-running gears. One of the most relevant damage mechanisms herein is tooth root breakage. Due to the high elasticity of thermoplastics, load-induced deflections strongly affect the tooth root stresses. In this work, a modified method for calculating the tooth root stresses is used to increase the accuracy of the bending strength calculation of plastic gears. Experimental results with steel-plastic spur gear pairings prove that load-induced deflections and dynamic tooth forces are not yet adequately considered in VDI 2736. In doing so, it was to some extent possible to validate and confirm the POM fatigue strength data in accordance with VDI 2736.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. VDI 2736:2014-06, Blatt 2, Cylindrical gears – Calculation of the load-carrying capacity.

  2. DIN 3990:1987-12 Tragfähigkeitsberechnung von Stirnrädern.

  3. ISO 6336:2006-09 Calculation of load capacity of spur and helical gears.

  4. DIN ISO 14635-1:2006-05 Gears – FZG test procedures – Part 1: FZG test method A/8,3/90 for relative scuffing load-carrying capacity of oils.

  5. Fürstenberger M (2013) Betriebsverhalten verlustoptimierter Kunststoffzahnräder. Ph.D. thesis. FZG/TU München, München

    Google Scholar 

  6. Thoma F (2011) Lastübertragung im verformten System Lager-Welle-Zahnrad. Ph.D. thesis. FZG/TU München, München

    Google Scholar 

  7. Hubert T, Hasl C et al (2015) Requirements of injection molded plastic test gears for back-toback and pulsator testing. VDI, International Conference on Gears. vol. 2., pp 1183–1190. ISBN 978-3180922553

    Google Scholar 

  8. Hasl C et al (2016) Verfahren zur Berechnung der Überdeckung unter Last von Kunststoffstirnrädern. Forsch Ingenieurwes. doi:10.1007/s10010-016-0207-8

    Google Scholar 

  9. Hasl C et al (2017) Method for calculating the tooth root stress of plastic spur gears meshing with steel gears under consideration of deflection-induced load sharing. Mech Mach Theory 111:152–163. http://www.sciencedirect.com/science/article/pii/S0094114X17301209. Accessed 06 July 2017

    Google Scholar 

  10. Hasl C et al (2017) Potential of oil-lubricated plastic gears. JSME International Conference on Motion and Power Transmissions, Proceedings of MPT2017, Kyoto. vol. 2.

    Google Scholar 

  11. Hachmann H, Strickle E (1966) Polyamide als Zahnradwerkstoffe. Konstruktion 18:3

    Google Scholar 

  12. Schedl U (1997) Pittingtest – Einfluß des Schmierstoffs auf die Grübchenlebensdauer einsatzgehärteter Zahnräder im Einstufen- und im Lastkollektivversuch. Heft Nr. 530. Forschungsvereinigung Antriebstechnik e. V. (FVA), Frankfurt am Main

    Google Scholar 

  13. Rettig H (1956) Dynamische Zahnkraft. Ph.D. thesis. FZG/TH München, München

    Google Scholar 

  14. Haibach E (2006) Betriebsfestigkeit. Springer, Berlin Heidelberg New York. ISBN 978-3540293637

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank German Research Foundation (DFG, Deutsche Forschungsgemeinschaft, HO 1339/47-1) for their kind sponsorship of this research project focusing on the bending strength of thermoplastic gears. Furthermore, we kindly thank Werner Bauser GmbH (Siemensstr. 2; D‑78564 Wehingen) for the development and manufacturing of the injection molded test gears. We also thank DuPont™ for providing the raw material and support in conjunction with the manufacturing process of the test gears.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hasl.

Appendix

Appendix

1.1 Nomenclature

 

\(a_{\text{ACR}}\)

Auxiliary factor used to calculate\(Y_{\varepsilon ,\text{ACR}}\)

[9]

\(b\)

mm

Face width

\(c^{\prime}\)

N/(mm ⋅ µm)

Single stiffness

[2]

\(c_{\gamma ,\text{ACR}}\)

N/(mm ⋅ µm)

Modified mesh stiffness according to ACORA

[9]

\(\varepsilon _{\alpha }\)

Transverse contact ratio

[2]

\(\varepsilon _{\alpha ,w}\)

Actual contact ratio

[8]

\(F_{\text{t}}\)

N

Nominal tangential load

\(K_{\text{v}}\)

Dynamic factor

[2]

\(K_{\text{vT}}\)

Dynamic factor of the test gears

\(m_{n}\)

mm

Normal module

\(m_{\text{red}}\)

kg/mm

Relative mass of a gear pair

[2]

\(n_{1}\)

\(\text{min}^{-1}\)

Rotation speed of pinion

[2]

\(n_{\text{E1}}\)

\(\text{min}^{-1}\)

Resonance speed of pinion

[2]

N

Resonance ratio

[2]

\(N_{\text{L}}\)

Number of load cycles

\(S_{\text{Fmin}}\)

Minimum required safety factor for tooth root stress

[1]

\(\sigma _{\text{F0},\text{ACR}}\)

MPa

Nominal tooth root stress according to ACORARS

[9]

\(\sigma _{F,\text{ACR}}\)

MPa

Tooth root stress according to ACORARS

\(\sigma _{\text{FG}}\)

MPa

Maximum root strength

[1]

\(\sigma _{\text{FG},\text{ACR}}\)

MPa

Maximum root strength according to ACORARS

\(\sigma_{\text{FG},\text{VDI}\rightarrow \text{ACR}}\)

MPa

Maximum root strength derived from VDI 2736

 

\(\sigma _{\text{FlimN}}\)

MPa

Fatigue strength under pulsating stress

[1]

\(\vartheta _{\text{Fu{\ss}}}\)

°C

Root temperature

[1]

\(Y_{\varepsilon ,\text{ACR}}\)

Modified contact ratio factor according to ACORA

[9]

\(Y_{\varepsilon \text{T}}\)

Contact ratio factor of the test gears

\(Y_{\beta }\)

Helix angle factor

[1]

\(Y_{\text{Fa}}\)

Form factor (DIN 3990 Method C)

[2]

\(Y_{\text{Sa}}\)

Stress correction factor (DIN 3990 Method C)

[2]

\(Y_{\text{ST}}\)

Stress correction factor of the test gears

[1]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasl, C., Oster, P., Tobie, T. et al. Bending strength of oil-lubricated cylindrical plastic gears. Forsch Ingenieurwes 81, 349–355 (2017). https://doi.org/10.1007/s10010-017-0224-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-017-0224-2

Navigation