Skip to main content
Log in

Alternative microstructures and their influence on mechanical properties of case-hardened gears

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

Case hardening is one of the most common heat treatment processes for highly loaded shafts and gears. Due to numerous investigations, a microstructure consisting of martensite with retained austenite (less than 30%) represents a high sustainable microstructure.

Besides this, there are some alternative microstructures compared to the commonly specified martensitic layer. The central question is how they influence the load carrying capacity of gears. A former research project was focused on the mechanical properties of carbonitrided parts by varying the amount of retained austenite. The investigations revealed that a microstructure containing a significantly increased amount of retained austenite can increase the flank load carrying capacity in comparison to standard case carburized gears. The tooth root bending strength was not influenced in a negative way.

A microstructure containing an increased amount of retained austenite can also be reached by gas carburizing. Furthermore, a variant containing bainite in the case hardened layer was adjusted. In an actual research project, the influence on the load carrying capacity of gears made out of the material 20MnCr5 was investigated in experimental test-runs, using spur gears. The results of the variants with alternative microstructure show some differences, e. g. in the hardness profiles, compared to results of standard case hardened gears. In comparison to the case hardened reference, the flank load capacity of the gears with the alternative microstructures showed increased flank load capacity numbers, whereas the tooth root bending fatigue was not influenced in a negative way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. AGMA (1994) Fundamental rating factors and Caculation methods for involute spur and helical gear teeth. ANSI/AGMA 2101-C95. AGMA, Alexandria (2101-C95)

    Google Scholar 

  2. Bhadeshia HKDH (2007) The nature, mechanism and properties of strong bainite. Proceedings of the 1st International Symposium on Steel Science. vol. 2007. The Iron and Steel Institute of Japan

  3. Dong J, Vetters H, Hofmann F, Zoch HW (2009) Microstructure and fatigue strength of the bearing steel 52100 after shortened bainitic treatment. J ASTM Int 7(2):1–10. doi:10.1520/JAI102511

    Google Scholar 

  4. Laukotka EM (2007) Referenzölkatalog. FVA-Heft-Nr. 660, Frankfurt am Main

  5. Güntner C, Saddei P, Tobie T et al (2017) Alternative mehrphasige Randschichtgefüge beim Einsatzhärten zur Steigerung der Festigkeitseigenschaften von verzahnten Bauteilen. Abschlussbericht, IGF-Nr. 17903. AiF Arbeitsgemeinschaft industrieller Forschungsvereinigunge AiF, Köln

    Google Scholar 

  6. ISO 6336:2016 (2016) Calculation of load capacity of spur and helical gears – Part 5: Strength and quality of materials

  7. Koller P, Schwienbacher S, Tobie T et al (2011) Flank – load – carrying capacity of case hardened gears with grinding burn. IDETC 2011 : ASME 2011 International Design Engineering Technical Conferences (IDETC) and Computers and Information in Engineering Conference (CIE), Washington DC.

    Google Scholar 

  8. Lombardo S, Steinbacher M, Tobie T et al (2011) Carbonitrieren von verzahnten Getriebebauteilen. Abschlussbericht, Forschungsheft Nr. 970. Forschungsvereinigung Antriebstechnik e. V., Frankfurt am Main ((AVIF A 235))

    Google Scholar 

  9. Sauter J, Schmidt I, Schulz M (1990) Einflussgrößen auf die Leistungsfähigkeit einsatzgehärteter Zahnräder. Härterei Tech Mitt 45:98–104

    Google Scholar 

  10. Tobie T, Oster P, Höhn B‑R (2001) Einfluss der Einsatzhärtungstiefe auf die Grübchen- und Zahnfußtragfähigkeit großer Zahnräder. Abschlussbericht, Forschungsvorhaben Nr. 271, Forschungsheft Nr. 622. Forschungsvereinigung Antriebstechnik e. V., Frankfurt am Main (IGF-Nr. 9880)

    Google Scholar 

  11. Tobie T, Oster P, Höhn B‑R (2003) Systematic investigation on the influence of case depth on the pitting and bending strength of case carburized gears. DETC 03, ASME, Design Engineering Technical Conference and Computers and Information in Engineering Conference, Chicago, pp 1–9 (Conference paper)

    Google Scholar 

  12. Vinokur BB et al (1978) Effect of retained austenite on the contact fatigue strength of carburized steel. Met Sci Heat Treat 20:927. doi:10.1007/BF00713758

    Article  Google Scholar 

Download references

Funding

The presented work was sponsored by the “Arbeitsgemeinschaft industrieller Forschungsvereinigung e. V. (AiF)”, by funds of the “Bundesministerium für Wirtschaft (BMWi, IGF no. 17903 N)” and with an equity ratio by the “Forschungsvereinigung Antriebstechnik e. V. (FVA)”. The results shown in this work were taken from results of the research project FVA 513 III “Randschichtgefüge”. More detailed information is given in the final report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Güntner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güntner, C., Tobie, T. & Stahl, K. Alternative microstructures and their influence on mechanical properties of case-hardened gears. Forsch Ingenieurwes 81, 245–251 (2017). https://doi.org/10.1007/s10010-017-0222-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-017-0222-4

Navigation