Ábrahám, E., Becker, B., Dehnert, C., Jansen, N., Katoen, J.P., Wimmer, R.: Counterexample generation for discrete-time Markov models: An introductory survey. In: SFM, LNCS, vol. 8483, pp. 65–121. Springer (2014)
Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model. Comput. Simul. 28(1), 6:1–6:39 (2018)
MathSciNet
Article
Google Scholar
Alur, R., Henzinger, T.A., Vardi, M.Y.: Theory in practice for system design and verification. SIGLOG News 2(1), 46–51 (2015)
Article
Google Scholar
Amato, C., Bernstein, D.S., Zilberstein, S.: Optimizing fixed-size stochastic controllers for POMDPs and decentralized POMDPs. Auton. Agent. Multi-Agent Syst. 21(3), 293–320 (2010)
Article
Google Scholar
Andova, S., Hermanns, H., Katoen, J.P.: Discrete-time rewards model-checked. In: FORMATS, LNCS, vol. 2791, pp. 88–104. Springer (2003)
Ashok, P., Chatterjee, K., Daca, P., Kretínský, J., Meggendorfer, T.: Value iteration for long-run average reward in Markov decision processes. In: CAV (1), LNCS, vol. 10426, pp. 201–221. Springer (2017)
Åström, K.: Optimal control of Markov processes with incomplete state information. J. Math. Anal. Appl. 10(1), 174–205 (1965)
MathSciNet
Article
Google Scholar
Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Model-checking continous-time Markov chains. ACM Trans. Comput. Log. 1(1), 162–170 (2000)
MathSciNet
Article
Google Scholar
Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic systems. In: Handbook of Model Checking, pp. 963–999. Springer (2018)
Baier, C., Clarke, E.M., Hartonas-Garmhausen, V., Kwiatkowska, M.Z., Ryan, M.: Symbolic model checking for probabilistic processes. In: ICALP, LNCS, vol. 1256, pp. 430–440. Springer (1997)
Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)
Article
Google Scholar
Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)
MATH
Google Scholar
Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional probabilities in Markovian models efficiently. In: TACAS, LNCS, vol. 8413, pp. 515–530. Springer (2014)
Baier, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Maximizing the conditional expected reward for reaching the goal. In: TACAS (2), LNCS, vol. 10206, pp. 269–285 (2017)
Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the reliability of your model checker: interval iteration for Markov decision processes. In: CAV (1), LNCS, vol. 10426, pp. 160–180. Springer (2017)
Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with SLAM. Commun. ACM 54(7), 68–76 (2011)
Article
Google Scholar
Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: Version 2.5. Tech. rep., Dep. of Computer Science, The University of Iowa (2015). www.smt-lib.org
Bauer, M.S., Mathur, U., Chadha, R., Sistla, A.P., Viswanathan, M.: Exact quantitative probabilistic model checking through rational search. In: FMCAD, pp. 92–99. IEEE (2017)
Bork, A., Junges, S., Katoen, J., Quatmann, T.: Verification of indefinite-horizon POMDPs. CoRR abs/2007.00102 (2020)
Boudali, H., Crouzen, P., Stoelinga, M.: A compositional semantics for dynamic fault trees in terms of interactive Markov chains. In: ATVA, LNCS, vol. 4762, pp. 441–456. Springer (2007)
Boudali, H., Crouzen, P., Stoelinga, M.: Dynamic fault tree analysis using input/output interactive Markov chains. In: DSN, pp. 708–717. IEEE Computer Society (2007)
Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety, dependability and performance analysis of extended AADL models. Comput. J. 54(5), 754–775 (2011)
Article
Google Scholar
Brázdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Kretínský, J., Kwiatkowska, M.Z., Parker, D., Ujma, M.: Verification of Markov decision processes using learning algorithms. In: ATVA, LNCS, vol. 8837, pp. 98–114. Springer (2014)
Braziunas, D., Boutilier, C.: Stochastic local search for POMDP controllers. In: AAAI, pp. 690–696. The MIT Press (2004)
Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.: JANI: quantitative model and tool interaction. In: TACAS (2), LNCS, vol. 10206, pp. 151–168 (2017)
Budde, C.E., Hartmanns, A., Klauck, M., Kretínský, J., Parker, D., Quatmann, T., Turini, A., Zhang, Z.: On correctness, precision, and performance in quantitative verification (QComp 2020 competition report). In: ISoLA, LNCS. Springer (2020). (To Appear)
Butkova, Y., Hartmanns, A., Hermanns, H.: A Modest approach to modelling and checking Markov automata. In: QEST, LNCS, vol. 11785, pp. 52–69. Springer (2019)
Butkova, Y., Wimmer, R., Hermanns, H.: Long-run rewards for Markov automata. In: TACAS (2), LNCS, vol. 10206, pp. 188–203 (2017)
Calder, M., Vyshemirsky, V., Gilbert, D.R., Orton, R.J.: Analysis of signalling pathways using continuous time Markov chains. Trans. Comput. Syst. Biol. VI LNCS 4220, 44–67 (2006)
MathSciNet
Article
Google Scholar
Ceska, M., Hensel, C., Junges, S., Katoen, J.P.: Counterexample-driven synthesis for probabilistic program sketches. In: FM, LNCS, vol. 11800, pp. 101–120. Springer (2019)
Chadha, R., Viswanathan, M.: A counterexample-guided abstraction-refinement framework for Markov decision processes. ACM Trans. Comput. Log. 12(1), 1:1–1:49 (2010)
MathSciNet
Article
Google Scholar
Chatterjee, K., Chmelik, M., Davies, J.: A symbolic SAT-based algorithm for almost-sure reachability with small strategies in POMDPs. In: AAAI, pp. 3225–3232. AAAI Press (2016)
Chatterjee, K., Doyen, L., Henzinger, T.A.: Qualitative analysis of partially-observable Markov decision processes. In: MFCS, LNCS, vol. 6281, pp. 258–269. Springer (2010)
Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathsat5 SMT solver. In: TACAS, LNCS, vol. 7795, pp. 93–107. Springer (2013)
Condon, A.: On algorithms for simple stochastic games. In: Advances in Computational Complexity Theory. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 13, pp. 51–71. DIMACS/AMS (1990)
Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: an open source C++ toolbox for strategic and parallel SMT solving. In: SAT, LNCS, vol. 9340, pp. 360–368. Springer (2015)
Courcoubetis, C., Yannakakis, M.: Verifying temporal properties of finite-state probabilistic programs. In: FOCS, pp. 338–345. IEEE Computer Society (1988)
Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains. In: ICTAC, LNCS, vol. 3407, pp. 280–294. Springer (2004)
Dehnert, C., Jansen, N., Wimmer, R., Ábrahám, E., Katoen, J.P.: Fast debugging of PRISM models. In: ATVA, LNCS, vol. 8837, pp. 146–162. Springer (2014)
Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen, J.P., Ábrahám, E.: Prophesy: a probabilistic parameter synthesis tool. In: CAV (1), LNCS, vol. 9206, pp. 214–231. Springer (2015)
Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A storm is coming: a modern probabilistic model checker. In: CAV (2), LNCS, vol. 10427, pp. 592–600. Springer (2017)
Dehnert, C., Katoen, J.P., Parker, D.: SMT-based bisimulation minimisation of Markov models. In: VMCAI, LNCS, vol. 7737, pp. 28–47. Springer (2013)
Delgrange, F., Katoen, J., Quatmann, T., Randour, M.: Simple strategies in multi-objective MDPs. In: TACAS (1), LNCS, vol. 12078, pp. 346–364. Springer (2020)
de Alfaro, L.: How to specify and verify the long-run average behavior of probabilistic systems. In: LICS, pp. 454–465. IEEE Computer Society (1998)
de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS, LNCS, vol. 4963, pp. 337–340. Springer (2008)
Dräger, K., Forejt, V., Kwiatkowska, M.Z., Parker, D., Ujma, M.: Permissive controller synthesis for probabilistic systems. Logical Methods Comput. Sci. 11, 2 (2015)
MathSciNet
Article
Google Scholar
Dugan, J.B., Bavuso, S.J., Boyd, M.: Fault trees and sequence dependencies. In: Proceedings of RAMS, pp. 286–293. IEEE (1990). 10.1109/ARMS.1990.67971
Eisentraut, C., Hermanns, H., Katoen, J.P., Zhang, L.: A semantics for every GSPN. In: Petri Nets, LNCS, vol. 7927, pp. 90–109. Springer (2013)
Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In: LICS, pp. 342–351. IEEE Computer Society (2010)
Etessami, K., Kwiatkowska, M.Z., Vardi, M.Y., Yannakakis, M.: Multi-objective model checking of Markov decision processes. Logical Methods Comput. Sci. 4, 4 (2008)
MathSciNet
MATH
Google Scholar
Forejt, V., Kwiatkowska, M.Z., Norman, G., Parker, D., Qu, H.: Quantitative multi-objective verification for probabilistic systems. In: TACAS, LNCS, vol. 6605, pp. 112–127. Springer (2011)
Forejt, V., Kwiatkowska, M.Z., Parker, D.: Pareto curves for probabilistic model checking. In: ATVA, LNCS, vol. 7561, pp. 317–332. Springer (2012)
Fredlund, L.: The timing and probability workbench: a tool for analysing timed processes. Tech. Rep. 49, Uppsala University (1994)
Ghadhab, M., Junges, S., Katoen, J.P., Kuntz, M., Volk, M.: Safety analysis for vehicle guidance systems with dynamic fault trees. Rel. Eng. Syst. Saf. 186, 37–50 (2019)
Article
Google Scholar
Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic programming. In: FOSE, pp. 167–181. ACM (2014)
Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)
Gurobi Optimization, L.: Gurobi optimizer reference manual (2019). http://www.gurobi.com
Haddad, S., Monmege, B.: Reachability in MDPs: refining convergence of value iteration. In: RP, LNCS, vol. 8762, pp. 125–137. Springer (2014)
Hahn, E.M., Hartmanns, A.: A comparison of time- and reward-bounded probabilistic model checking techniques. SETTA LNCS 9984, 85–100 (2016)
MATH
Google Scholar
Hahn, E.M., Hartmanns, A., Hensel, C., Klauck, M., Klein, J., Kretínský, J., Parker, D., Quatmann, T., Ruijters, E., Steinmetz, M.: The 2019 comparison of tools for the analysis of quantitative formal models- (QComp 2019 competition report). In: TACAS (3), LNCS, vol. 11429, pp. 69–92. Springer (2019)
Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric Markov models. STTT 13(1), 3–19 (2011)
Article
Google Scholar
Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: A web-based probabilistic model checker. In: FM, LNCS, vol. 8442, pp. 312–317. Springer (2014)
Han, T., Katoen, J.P., Damman, B.: Counterexample generation in probabilistic model checking. IEEE Trans. Softw. Eng. 35(2), 241–257 (2009)
Article
Google Scholar
Hansen, E.A.: Solving POMDPs by searching in policy space. In: UAI, pp. 211–219. Morgan Kaufmann (1998)
Hansson, H., Jonsson, B.: A framework for reasoning about time and reliability. In: RTSS, pp. 102–111. IEEE Computer Society (1989)
Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Asp. Comput. 6(5), 512–535 (1994)
Article
Google Scholar
Hartmanns, A., Hermanns, H.: The Modest Toolset: An integrated environment for quantitative modelling and verification. In: TACAS, LNCS, vol. 8413, pp. 593–598. Springer (2014)
Hartmanns, A., Hermanns, H.: Explicit model checking of very large MDP using partitioning and secondary storage. In: ATVA, LNCS, vol. 9364, pp. 131–147. Springer (2015)
Hartmanns, A., Junges, S., Katoen, J.P., Quatmann, T.: Multi-cost bounded reachability in MDP. In: TACAS (2), LNCS, vol. 10806, pp. 320–339. Springer (2018)
Hartmanns, A., Junges, S., Katoen, J.P., Quatmann, T.: Multi-cost bounded tradeoff analysis in MDP. JAR (2020)
Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. In: CAV (2), LNCS, vol. 12225, pp. 488–511. Springer (2020)
Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quantitative verification benchmark set. In: TACAS (1), LNCS, vol. 11427, pp. 344–350. Springer (2019)
Hartonas-Garmhausen, V., Campos, S.V.A., Clarke, E.M.: ProbVerus: probabilistic symbolic model checking. In: ARTS, LNCS, vol. 1601, pp. 96–110. Springer (1999)
He, J., Seidel, K., McIver, A.: Probabilistic models for the guarded command language. Sci. Comput. Program. 28(2–3), 171–192 (1997)
MathSciNet
MATH
Google Scholar
Helmink, L., Sellink, M.P.A., Vaandrager, F.W.: Proof-checking a data link protocol. In: TYPES, LNCS, vol. 806, pp. 127–165. Springer (1993)
Hensel, C.: The probabilistic model checker Storm: symbolic methods for probabilistic model checking. Ph.D. thesis, RWTH Aachen University, Germany (2018)
Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic model checker storm: evaluation results and replication package (2020). https://doi.org/10.5281/zenodo.3571209
Hermanns, H., Katoen, J.P., Meyer-Kayser, J., Siegle, M.: A Markov chain model checker. In: TACAS, LNCS, vol. 1785, pp. 347–362. Springer (2000)
Holzmann, G.J.: Mars code. Commun. ACM 57(2), 64–73 (2014)
Article
Google Scholar
Horák, K., Bosanský, B., Chatterjee, K.: Goal-HSVI: heuristic search value iteration for goal POMDPs. In: IJCAI, pp. 4764–4770. ijcai.org (2018)
Junges, S., Ábrahám, E., Hensel, C., Jansen, N., Katoen, J.P., Quatmann, T., Volk, M.: Parameter synthesis for Markov models. CoRR abs/1903.07993 (2019)
Junges, S., Jansen, N., Dehnert, C., Topcu, U., Katoen, J.P.: Safety-constrained reinforcement learning for mdps. In: TACAS, LNCS, vol. 9636, pp. 130–146. Springer (2016)
Junges, S., Jansen, N., Seshia, S.A.: Enforcing almost-sure reachability in pomdps. CoRR abs/2007.00085 (2020)
Junges, S., Jansen, N., Wimmer, R., Quatmann, T., Winterer, L., Katoen, J.P., Becker, B.: Finite-state controllers of POMDPs using parameter synthesis. In: UAI, pp. 519–529. AUAI Press (2018)
Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998)
MathSciNet
Article
Google Scholar
Katoen, J.P.: The probabilistic model checking landscape. In: LICS, pp. 31–45. ACM (2016)
Katoen, J.P., Kemna, T., Zapreev, I.S., Jansen, D.N.: Bisimulation minimisation mostly speeds up probabilistic model checking. In: TACAS, LNCS, vol. 4424, pp. 87–101. Springer (2007)
Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104 (2011)
Article
Google Scholar
Klein, J., Baier, C., Chrszon, P., Daum, M., Dubslaff, C., Klüppelholz, S., Märcker, S., Müller, D.: Advances in probabilistic model checking with PRISM: variable reordering, quantiles and weak deterministic büchi automata. STTT 20(2), 179–194 (2018)
Article
Google Scholar
Kwek, S., Mehlhorn, K.: Optimal search for rationals. Inf. Process. Lett. 86(1), 23–26 (2003)
MathSciNet
Article
Google Scholar
Kwiatkowska, M.Z., Norman, G., Parker, D.: Probabilistic symbolic model checking with PRISM: a hybrid approach. In: TACAS, LNCS, vol. 2280, pp. 52–66. Springer (2002)
Kwiatkowska, M.Z., Norman, G., Parker, D.: Game-based abstraction for Markov decision processes. In: QEST, pp. 157–166. IEEE Computer Society (2006)
Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems. In: CAV, LNCS, vol. 6806, pp. 585–591. Springer (2011)
Kwiatkowska, M.Z., Norman, G., Parker, D.: Probabilistic verification of Herman’s self-stabilisation algorithm. Formal Asp. Comput. 24(4–6), 661–670 (2012)
MathSciNet
Article
Google Scholar
Kwiatkowska, M.Z., Norman, G., Segala, R.: Automated verification of a randomized distributed consensus protocol using cadence SMV and PRISM. In: CAV, LNCS, vol. 2102, pp. 194–206. Springer (2001)
Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic transition systems for system design and analysis. Formal Asp. Comput. 19(1), 93–109 (2007)
Article
Google Scholar
Larsen, K.G., Legay, A.: Statistical model checking: past, present, and future. In: ISoLA (1), LNCS, vol. 9952, pp. 3–15 (2016)
Lovejoy, W.S.: Computationally feasible bounds for partially observed Markov decision processes. Oper. Res. 39(1), 162–175 (1991)
MathSciNet
Article
Google Scholar
Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning and related stochastic optimization problems. Artif. Intell. 147(1–2), 5–34 (2003)
MathSciNet
Article
Google Scholar
Marsan, M.A., Conte, G., Balbo, G.: A class of generalized stochastic petri nets for the performance evaluation of multiprocessor systems. ACM Trans. Comput. Syst. 2(2), 93–122 (1984)
Article
Google Scholar
Meuleau, N., Kim, K., Kaelbling, L.P., Cassandra, A.R.: Solving POMDPs by searching the space of finite policies. In: UAI, pp. 417–426. Morgan Kaufmann (1999)
Norman, G., Parker, D., Zou, X.: Verification and control of partially observable probabilistic systems. Real-Time Syst. 53(3), 354–402 (2017)
Article
Google Scholar
Norris, J.R.: Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (1998)
MATH
Google Scholar
Olmedo, F., Gretz, F., Jansen, N., Kaminski, B.L., Katoen, J.P., McIver, A.: Conditioning in probabilistic programming. ACM Trans. Program. Lang. Syst. 40(1), 4:1–4:50 (2018)
Article
Google Scholar
Pajarinen, J., Peltonen, J.: Periodic finite state controllers for efficient POMDP and DEC-POMDP planning. In: NIPS, pp. 2636–2644 (2011)
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., VanderPlas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
MathSciNet
MATH
Google Scholar
Puterman, M.L.: Markov Decision Processes. Wiley, New York (1994)
Book
Google Scholar
Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.P.: Parameter synthesis for Markov models: faster than ever. ATVA LNCS 9938, 50–67 (2016)
MATH
Google Scholar
Quatmann, T., Junges, S., Katoen, J.P.: Markov automata with multiple objectives. In: CAV (1), LNCS, vol. 10426, pp. 140–159. Springer (2017)
Quatmann, T., Katoen, J.P.: Sound value iteration. In: CAV (1), LNCS, vol. 10981, pp. 643–661. Springer (2018)
Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)
MathSciNet
Article
Google Scholar
Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nord. J. Comput. 2(2), 250–273 (1995)
MathSciNet
MATH
Google Scholar
Somenzi, F.: CUDD 3.0.0. http://vlsi.colorado.edu/~fabio/CUDD/html/. Also available at https://github.com/ivmai/cudd
Spel, J., Junges, S., Katoen, J.P.: Are parametric Markov chains monotonic? In: ATVA, LNCS, vol. 11781, pp. 479–496. Springer (2019)
Sullivan, K.J., Dugan, J.B., Coppit, D.: The galileo fault tree analysis tool. In: FTCS, pp. 232–235. IEEE Computer Society (1999)
Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In: FOCS, pp. 327–338. IEEE Computer Society (1985)
Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model checking techniques. IEEE Trans. Ind. Inform. 14(1), 370–379 (2018)
Article
Google Scholar
van Dijk, T.: Sylvan: multi-core decision diagrams. Ph.D. thesis, University of Twente, Enschede, Netherlands (2016)
van Dijk, T., van de Pol, J.: Multi-core symbolic bisimulation minimisation. STTT 20(2), 157–177 (2018)
Article
Google Scholar
Wachter, B.: Refined probabilistic abstraction. Ph.D. thesis, Saarland University (2011)
Wimmer, R.: Symbolische Methoden für die probabilistische Verifikation: Zustandsraumreduktion und Gegenbeispiele. In: Ausgezeichnete Informatikdissertationen, LNI, vol. D-12, pp. 271–280. GI (2011)
Wimmer, R., Jansen, N., Vorpahl, A., Ábrahám, E., Katoen, J.P., Becker, B.: High-level counterexamples for probabilistic automata. In: QEST, LNCS, vol. 8054, pp. 39–54. Springer (2013)
Wimmer, R., Kortus, A., Herbstritt, M., Becker, B.: Probabilistic model checking and reliability of results. In: DDECS, pp. 207–212. IEEE Computer Society (2008)
Winkler, T., Junges, S., Pérez, G.A., Katoen, J.: On the complexity of reachability in parametric markov decision processes. In: CONCUR, LIPIcs, vol. 140, pp. 14:1–14:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)
Winterer, L., Junges, S., Wimmer, R., Jansen, N., Topcu, U., Katoen, J.P., Becker, B.: Motion planning under partial observability using game-based abstraction. In: CDC, pp. 2201–2208. IEEE (2017)