Skip to main content
Log in

Enrichment of epoxy coating on amalgamation with corrosion-resistant poly (2,3-benzopyrrole)/zinc oxide nanoflowers (PBZNF) synthesized composite for carbon steel alloy featuring excellent hydrophobicity

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Herein, poly(2,3-benzopyrrole)/zinc oxide nanoflower (PBZNF) was synthesized and its optimised amount was blended in the polymeric epoxy resin to get superlative coating for carbon steel displaying ultrahigh hydrophobicity and excellent corrosion retardation. The composite and formulated coatings characterised using relevant structural techniques. EC (epoxy coating), ZNF/EC, and 0.05 g, 0.10 g and 0.15 g PBZNF blended EC for carrying out EIS study where in 0.10PBZNF/EC coating over carbon steel reflected highest hydrophobicity (139.1°) and Rct = 3.01 × 109 Ω cm2 in 3.5% NaCl solution after 42 days with 93.91% found as its protectivity and inducing scratches, EIS of 0.10PBZNF/EC demonstrated 1.17 × 109 Ω cm2 after 48 h.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Spiegel M, Zahs A, Grabke HJ (2003) Fundamental aspects of chlorine induced corrosion in power plants. Mater High Temp 20:153–159. https://doi.org/10.3184/096034003782749080

    Article  CAS  Google Scholar 

  2. Pulikkalparambil H, Siengchin S, Parameswaranpillai J (2018) Corrosion protective self-healing epoxy resin coatings based on inhibitor and polymeric healing agents encapsulated in organic and inorganic micro and nanocontainers. Nano-Structures and Nano-Objects 16:381–395. https://doi.org/10.1016/j.nanoso.2018.09.010

    Article  CAS  Google Scholar 

  3. Dwivedi D, Lepková K, Becker T (2017) Carbon steel corrosion: a review of key surface properties and characterization methods. RSC Adv 7:4580–4610. https://doi.org/10.1039/C6RA25094G

    Article  CAS  Google Scholar 

  4. Raj R, Morozov Y, Calado LM, Taryba MG, Kahraman R, Shakoor A, Montemor MF (2019) Inhibitor loaded calcium carbonate microparticles for corrosion protection of epoxy-coated carbon steel. Electrochim Acta 319:801–812. https://doi.org/10.1016/j.electacta.2019.07.059

    Article  CAS  Google Scholar 

  5. Dalawai SP, Saad Aly MA, Latthe SS, Xing R, Sutar RS, Nagappan S, Ha CS, Sadasivuni KK, Liu S (2020) Recent advances in durability of superhydrophobic self-cleaning technology: a critical review. Prog Org Coatings. https://doi.org/10.1016/j.porgcoat.2019.105381

    Article  Google Scholar 

  6. Dutta GK, Karak N (2022) Bio-based waterborne polyester/cellulose nanofiber-reduced graphene oxide–zinc oxide nanocomposite: an approach towards sustainable mechanically robust anticorrosive coating. Cellulose. https://doi.org/10.1007/s10570-021-04414-4

    Article  Google Scholar 

  7. Bagherzadeh MR, Mahdavi F (2007) Preparation of epoxy-clay nanocomposite and investigation on its anti-corrosive behavior in epoxy coating. Prog Org Coatings 60:117–120. https://doi.org/10.1016/j.porgcoat.2007.07.011

    Article  CAS  Google Scholar 

  8. Kalia V, Kumar P, Kumar S, Pahuja P, Jhaa G, Lata S, Dahiya H (2020) Synthesized oxadiazole derivatives as benign agents for controlling mild steel dissolution: experimental and theoretical approach. J Mol Liq 313:113601. https://doi.org/10.1016/j.molliq.2020.113601

    Article  CAS  Google Scholar 

  9. Hao Y, Zhou X, Shao J, Zhu Y (2019) The influence of multiple fillers on friction and wear behavior of epoxy composite coatings. Surf Coatings Technol 362:213–219. https://doi.org/10.1016/j.surfcoat.2019.01.110

    Article  CAS  Google Scholar 

  10. Ullah S, Ahmad F (2014) Effects of zirconium silicate reinforcement on expandable graphite based intumescent fire retardant coating. Polym Degrad Stab 103:49–62. https://doi.org/10.1016/j.polymdegradstab.2014.02.016

    Article  CAS  Google Scholar 

  11. Thariq M, Sultan H (2021) Tribological applications of composite materials. Springer Singapore. https://doi.org/10.1007/978-981-15-9635-3

    Article  Google Scholar 

  12. Yang G, Zhang B, Zheng C, Xu W, Hou B (2023) Waterborne superhydrophobic coating with abrasion and corrosion resistant capabilities. Colloids Surfaces A Physicochem Eng Asp 664:131170. https://doi.org/10.1016/j.colsurfa.2023.131170

    Article  CAS  Google Scholar 

  13. Bahrani M, Sharif M, Amirazodi K (2022) Preparation and characterization of polythiophene/graphene oxide/epoxy nanocomposite coatings with advanced properties. Polym Bull 79:263–284. https://doi.org/10.1007/s00289-020-03529-1

    Article  CAS  Google Scholar 

  14. Thomas D, Philip E, Sindhu R, Ulaeto SB, Pugazhendhi A, Awasthi MK (2022) Developments in smart organic coatings for anticorrosion applications: a review. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-02363-x

    Article  Google Scholar 

  15. Vethanathan SJK, Aboorvakani R, Madhu KU (2022) Yttrium doped ZnO nanofillers reinforced epoxy coating for anticorrosion application. Inorg Chem Commun 144:109929. https://doi.org/10.1016/j.inoche.2022.109929

    Article  CAS  Google Scholar 

  16. Steffi AP, Balaji R, Chandrasekar N, Prakash N, Rajesh TP, Ethiraj S, Samuel MS, Vuppala S (2022) High-performance anti-corrosive coatings based on rGO-SiO2-TiO2 ternary heterojunction nanocomposites for superior protection for mild steel specimens. Diam Relat Mater 125:108968. https://doi.org/10.1016/j.diamond.2022.108968

    Article  CAS  Google Scholar 

  17. Chen Z, Yang W, Xu B, Guo Y, Chen Y, Yin X, Liu Y (2018) Corrosion behaviors and physical properties of polypyrrole-molybdate coating electropolymerized on carbon steel. Prog Org Coatings 122:159–169. https://doi.org/10.1016/j.porgcoat.2018.05.022

    Article  CAS  Google Scholar 

  18. Diraki A, Omanovic S (2022) Smart PANI/epoxy anti-corrosive coating for protection of carbon steel in sea water. Prog Org Coatings 168:106835. https://doi.org/10.1016/j.porgcoat.2022.106835

    Article  CAS  Google Scholar 

  19. Obaid AN, Al-Bermany E (2023) Performance of functionalized graphene oxide to improve anti-corrosion of epoxy coating on 2024–T3 aluminium alloy. Mater Chem Phys 305:127849. https://doi.org/10.1016/j.matchemphys.2023.127849

    Article  CAS  Google Scholar 

  20. Lakourj MM, Norouzian RS, Esfandyar M, Ghasemi mir S (2020) Conducting nanocomposites of polypyrrole-co-polyindole doped with carboxylated CNT: synthesis approach and anticorrosion/antibacterial/antioxidation property. Mater Sci Eng B Solid-State Mater Adv Technol. https://doi.org/10.1016/j.mseb.2020.114673

    Article  Google Scholar 

  21. Saini N, Pahuja P, Lgaz H, Chung IM, Selwal K, Singhal S, Lata S (2019) PVP oxime-TiO2-adenine as a hybrid material: decent synthesis and depiction with advanced theoretical measurements for anticorrosive behavior and antibacterial potentiality. J Mol Liq 278:438–451. https://doi.org/10.1016/j.molliq.2019.01.054

    Article  CAS  Google Scholar 

  22. Nayak SR, Mohana KNS, Hegde MB, Rajitha K, Madhusudhana AM, Naik SR (2021) Functionalized multi-walled carbon nanotube/polyindole incorporated epoxy: an effective anti-corrosion coating material for mild steel. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.158057

    Article  Google Scholar 

  23. Pradeep H, Suresh BMS, Thadathil A, Periyat P (2022) Recent trends and advances in polyindole-based nanocomposites as potential antimicrobial agents: a mini review. RSC Adv 12:8211–8227. https://doi.org/10.1039/d1ra09317g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mobin M, Ansar F, Shoeb M, Parveen M, Aslam J (2021) ynergistic effect of graphene polyindole nanocomposite for enhanced corrosion protection of aqueous coating in 3.5% NaCl solution for low carbon steel. Nano Sel 2:293–302. https://doi.org/10.1002/nano.202000051

    Article  CAS  Google Scholar 

  25. Elango M, Deepa M, Subramanian R, Musthafa AM (2017) Synthesis, characterization of polyindole/Ag[sbnd]ZnO nanocomposites and its antibacterial activity. J. Alloys Compd 696:391–401. https://doi.org/10.1016/j.jallcom.2016.11.258

    Article  CAS  Google Scholar 

  26. Shi X, Nguyen TA, Suo Z, Liu Y, Avci R (2009) Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating. Surf Coatings Technol 204:237–245. https://doi.org/10.1016/j.surfcoat.2009.06.048

    Article  CAS  Google Scholar 

  27. Pratap R, Chowdhury SR, Singh AK, Giri R (2023) Study on structural, microstructural and dielectric properties of zinc oxide nanostructure synthesized by Sol-gel technique. Mater. Today Proc 82:369–374. https://doi.org/10.1016/j.matpr.2023.03.091

    Article  CAS  Google Scholar 

  28. Borbón S, Lugo S, López I (2019) Materials science in semiconductor processing fast synthesis of ZnO nanoflowers using a conductively heated sealed-vessel reactor without additives 91:310–315

    Google Scholar 

  29. Tebyetekerwa M, Wang X, Marriam I, Dan P, Yang S, Zhu M (2017) Green approach to fabricate polyindole composite nanofibers for energy and sensor applications. Mater Lett 209:400–403. https://doi.org/10.1016/j.matlet.2017.08.062

    Article  CAS  Google Scholar 

  30. Pahuja P, Malik R, Saini N, Kumar S, Lata S (2020) PPy–TiO2–phenylalanine composites as anticorrosive coatings electrodeposited over Fe–C steel surface in the marine environment. J Adhes Sci Technol 34:1823–1839. https://doi.org/10.1080/01694243.2020.1730671

    Article  CAS  Google Scholar 

  31. Sharma N, Sharma S, Sharma SK, Mehta R (2023) Materials Today : Proceedings Nano-modified epoxy coatings : an effective method for sustainable construction. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.08.069

    Article  PubMed  Google Scholar 

  32. Mousavi SF, Davar F, Loghman-Estarki MR (2016) Controllable synthesis of ZnO nanoflowers by the modified sol–gel method. J Mater Sci Mater Electron 27:12985–12995. https://doi.org/10.1007/s10854-016-5437-x

    Article  CAS  Google Scholar 

  33. Taylan NB, Sari B, Unal HI (2010) Preparation of conducting poly(vinyl chloride)/polyindole composites and freestanding films via chemical polymerization. J Polym Sci Part B Polym Phys 48:1290–1298. https://doi.org/10.1002/polb.22023

    Article  CAS  Google Scholar 

  34. Raghavendra B, Sankarappa T, Malge A (2020) Structural, optical absorption and conductivity of PIn/Co3O4 composites. J Inorg Organomet Polym Mater 30:3586–3594. https://doi.org/10.1007/s10904-020-01589-4

    Article  CAS  Google Scholar 

  35. Handore KN, Bhavsar SV, Pande N, Chhattise PK, Sharma SB, Dallavalle S, Gaikwad V, Mohite KC, Chabukswar VV (2014) Polyindole-ZnO nanocomposite: synthesis, characterization and heterogeneous catalyst for the 3,4-dihydropyrimidinone synthesis under solvent-free conditions. Polym - Plast Technol Eng 53:734–741. https://doi.org/10.1080/03602559.2013.877930

    Article  CAS  Google Scholar 

  36. Begum B, Bilal S, Shah AUHA, Röse P (2022) Synthesis, Characterization and electrochemical performance of a redox-responsive polybenzopyrrole@nickel oxide nanocomposite for robust and efficient Faraday energy storage. Nanomaterials 12:6–8. https://doi.org/10.3390/nano12030513

    Article  CAS  Google Scholar 

  37. Zhou H, Chen R, Liu Q, Liu J, Yu J, Wang C, Zhang M, Liu P, Wang J (2019) Fabrication of ZnO/epoxy resin superhydrophobic coating on AZ31 magnesium alloy. Chem Eng J 368:261–272. https://doi.org/10.1016/j.cej.2019.02.032

    Article  CAS  Google Scholar 

  38. Najjar R, Katourani SA, Hosseini MG (2018) Self-healing and corrosion protection performance of organic polysulfide@urea-formaldehyde resin core-shell nanoparticles in epoxy/PANI/ZnO nanocomposite coatings on anodized aluminum alloy. Prog Org Coatings 124:110–121. https://doi.org/10.1016/j.porgcoat.2018.08.015

    Article  CAS  Google Scholar 

  39. Kalia V, Kumar P, Kumar S, Goyal M, Pahuja P, Jhaa G, Lata S, Dahiya H, Kumar S, Kumari A, Verma C (2022) Synthesis, characterization and corrosion inhibition potential of oxadiazole derivatives for mild steel in 1M HCl: Electrochemical and computational studies. J Mol Liq 348:118021. https://doi.org/10.1016/j.molliq.2021.118021

    Article  CAS  Google Scholar 

  40. Dhanda M, Arora R, Saini M, Nehra SP, Lata S (2022) Prolific intercalation of VO2 (D)/polypyrrole/g-C3N4 as an energy storing electrode with remarkable capacitance. New J Chem 46:14251–14266. https://doi.org/10.1039/d2nj02401b

    Article  CAS  Google Scholar 

  41. Arora R, Nehra SP, Lata S (2022) Trio obtainment through polypyrrole insertions in argentum/graphitic carbon nitride for accelerating super-capacitive energy parameters. J Energy Storage 56:105879. https://doi.org/10.1016/j.est.2022.105879

    Article  Google Scholar 

  42. Hu C, Kwan K, Xie X, Zhou C, Ren K (2022) Superhydrophobic polyaniline/TiO2 composite coating with enhanced anticorrosion function. React Funct Polym 179:105381. https://doi.org/10.1016/j.reactfunctpolym.2022.105381

    Article  CAS  Google Scholar 

  43. Liu X, Jie H, Liu R, Liu Y, Li T, Lyu K (2021) Research on the preparation and anticorrosion properties of ep/ceo2-go nanocomposite coating. Polymers (Basel) 13:1–14. https://doi.org/10.3390/polym13020183

    Article  CAS  Google Scholar 

  44. Rajitha K, Mohana KNS, Nayak SR, Hegde MB, Madhusudhana AM (2020) An efficient and eco-friendly anti-corrosive system based on beeswax-graphene oxide nanocomposites on mild steel in saline medium. Surfaces and Interfaces 18:100393. https://doi.org/10.1016/j.surfin.2019.100393

    Article  CAS  Google Scholar 

  45. Ahlawat S, Lata S (2023) Immaculate composite of g-C3N4/TiO2/polypyrrole as a facile super-capacitive electrode material for energy accumulation. Mater Res Bull 165:112328. https://doi.org/10.1016/j.materresbull.2023.112328

    Article  CAS  Google Scholar 

  46. Krishnan A (2022) Exploration of anti-corrosive activity of TP (thespesia populnea)-TiO2 composite coating for mild steel (CS) in aggressive environments. Korean J Chem Eng 39:2861–2874. https://doi.org/10.1007/s11814-022-1158-4

    Article  CAS  Google Scholar 

  47. Zhao Y, Tian S, Lin D, Zhang Z, Li G (2022) Functional anti-corrosive and anti-bacterial surface coatings based on cuprous oxide/polyaniline microcomposites. Mater Des 216:110589. https://doi.org/10.1016/j.matdes.2022.110589

    Article  CAS  Google Scholar 

  48. Sun J, Zhang Q, Jiang Y, Li H, Zhang B (2023) One-step spraying achieved superhydrophobic fluoroSiO2@epoxy coating with corrosion-wear resistance and anti-wetting stability. Colloids Surfaces A Physicochem Eng Asp 658:130702. https://doi.org/10.1016/j.colsurfa.2022.130702

    Article  CAS  Google Scholar 

  49. Zhai Y, Pan K, Zhang E (2020) Polymer-Camphorsulfonic Acid Embedded

  50. Yap SW, Johari N, Mazlan SA, Ahmad SNAS, Arifin R, Hassan NA, Johari MAF (2023) Superhydrophobic zinc oxide/epoxy coating prepared by a one-step approach for corrosion protection of carbon steel. J. Mater. Res. Technol 25:5751–5766. https://doi.org/10.1016/j.jmrt.2023.07.013

    Article  CAS  Google Scholar 

  51. May M (2016) Corrosion behavior of mild steel immersed in different concentrations of NaCl solutions. J Sebha Univ Appl Sci 15:1–12

    Google Scholar 

  52. Thakran M, Lata S (2023) Polybenzopyrrole/nano-alumina composite blend with zirconium silicate reinforced epoxy as protective coating to subside corrosion of carbon steel within a dilute NaCl solution. J Mol Struct 1298:137068. https://doi.org/10.1016/j.molstruc.2023.137068

    Article  CAS  Google Scholar 

  53. Arshad N, Imran M, Akram M, Altaf F (2022) Graphene oxide-aryl substituted triazole thin hybrid corrosion resistant coating for copper. Port Electrochim Acta 40:193–207. https://doi.org/10.4152/pea.2022400304

    Article  CAS  Google Scholar 

  54. Sharma V, Goyat MS, Hooda A, Pandey JK, Kumar A, Gupta R, Upadhyay AK, Prakash R, Kirabira JB, Mandal P, Bhargav PK (2020) Recent progress in nano-oxides and CNTs based corrosion resistant superhydrophobic coatings: a critical review. Prog Org Coatings 140:105512. https://doi.org/10.1016/j.porgcoat.2019.105512

    Article  CAS  Google Scholar 

  55. Khodabakhshi J, Mahdavi H, Najafi F (2019) Investigation of viscoelastic and active corrosion protection properties of inhibitor modified silica nanoparticles/epoxy nanocomposite coatings on carbon steel. Corros Sci 147:128–140. https://doi.org/10.1016/j.corsci.2018.11.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat, Haryana (India), for fulfilling necessary equipment’s and requirements. One of the authors, Meenakshi Thakran, acknowledges the Council for Scientific and Industrial Research (CSIR), Pusa, New Delhi, India, for providing financial aid under the CSIR-JRF scheme with registration number of 09/1063(0027)/2019-EMR-I.

Funding

Human Resource Development Group,09/1063(0027)/2019-EMR-I,Meenakshi Thakran

Author information

Authors and Affiliations

Authors

Contributions

Meenakshi Thakran: conceptualization, methodology, consciousness, investigation, data assembling, validation, funding acquisition, exploration, writing draft; Suman Lata: conceptualization, supervision, methodology, formal analysis, investigation, validation, visualization, writing review and editing.

Corresponding author

Correspondence to Suman Lata.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakran, M., Lata, S. Enrichment of epoxy coating on amalgamation with corrosion-resistant poly (2,3-benzopyrrole)/zinc oxide nanoflowers (PBZNF) synthesized composite for carbon steel alloy featuring excellent hydrophobicity. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05913-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05913-7

Keywords

Navigation