Skip to main content
Log in

Electrochemical fabrication of TiO2/TiP2O7 and Ag/TiO2/TiP2O7 nanocomposites for heavy metal detection and methylene blue dye degradation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanocomposites of titanium dioxide (TO) and titanium pyrophosphate (TPO) have attracted a considerable attention over the past several decades due to their optical properties and high ratio of surface/volume. TO/TPO and Ag/TO/TPO nanocomposites were prepared by electrochemical techniques, followed by electroless deposition of silver. The nanocomposites were discussed by FESEM, TEM, XRD, XPS, FT-IR, Raman, and UV–Vis spectroscopy. XRD and TEM revealed the nanoparticle size of the two composites. Glassy carbon-modified electrode by TO/TPO gave better response than Ag/TO/TPO for the electro-analysis of Pb(II) and Hg(II) as observed by the anodic stripping technique where the detection limit values were 3.09 and 7.46 for Pb(II) and Hg(II), respectively. It was found that the Ag/TO/TPO@GC exhibits an improved sensitivity for the determination of both Pb(II) and Hg(II) ions simultaneously. The presence of O–P–O, Ti–O bonds and the absence of Ti–P were an evidence of the replacement of P atom to Ti atom in their lattice which resulted in forming oxygen vacancies that develop the electrochemical characteristics of the nanocomposite. A slight extension of the absorption edges of TO/TPO into the visible region and a decrease in the band gap gave TO/TPO superior photocatalytic activity for the degradation of methylene blue dye with extent of 99% and a first-order reaction with rate constant 0.01 min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kemper T, Sommer S (2002) Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Environ Sci Technol 36:2742–2747

    Article  CAS  PubMed  Google Scholar 

  2. Tu C, Shao Y, Gan N, Xu Q, Guo Z (2004) Oxidative DNA strand scission induced by a trinuclear copper (II) complex. Inorg Chem 43:4761–4766

    Article  CAS  PubMed  Google Scholar 

  3. Tuzen M, Melek E, Soylak M (2006) Celtek clay as sorbent for separation–preconcentration of metal ions from environmental samples. J Hazard Mater 136:597–603

    Article  CAS  PubMed  Google Scholar 

  4. Liu C, Dasgupta NP, Yang P (2014) Semiconductor nanowires for artificial photosynthesis. Chem Mater 26:415–422

    Article  CAS  Google Scholar 

  5. Park Y, McDonald KJ, Choi K-S (2013) Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem Soc Rev 42:2321–2337

    Article  CAS  PubMed  Google Scholar 

  6. Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111:2834–2860

    Article  CAS  Google Scholar 

  7. Yantasee W, Hongsirikarn K, Warner CL, Choi D, Sangvanich T, Toloczko MB, Warner MG, Fryxell GE, Addleman RS, Timchalk C (2008) Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles. Analyst 133:348–355

    Article  CAS  PubMed  Google Scholar 

  8. Wei Y, Yang R, Yu X-Y, Wang L, Liu J-H, Huang X-J (2012) Stripping voltammetry study of ultra-trace toxic metal ions on highly selectively adsorptive porous magnesium oxide nanoflowers. Analyst 137:2183–2191

    Article  CAS  PubMed  Google Scholar 

  9. Wu Z, Jiang L, Zhu Y, Xu C, Ye Y, Wang X (2012) Synthesis of mesoporous NiO nanosheet and its application on mercury (II) sensor. J Solid State Electrochem 16:3171–3177

    Article  CAS  Google Scholar 

  10. Gao C, Yu X-Y, Xiong S-Q, Liu J-H, Huang X-J (2013) Electrochemical detection of arsenic (III) completely free from noble metal: Fe3O4 microspheres-room temperature ionic liquid composite showing better performance than gold. Anal Chem 85:2673–2680

    Article  CAS  PubMed  Google Scholar 

  11. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    Article  CAS  PubMed  Google Scholar 

  12. Blakers A (2017) Sustainable energy options. Learning From 319

  13. Scanlon DO, Dunnill CW, Buckeridge J, Shevlin SA, Logsdail AJ, Woodley SM, Catlow CRA, Powell MJ, Palgrave RG, Parkin IP (2013) Band alignment of rutile and anatase TiO2. Nat Mater 12:798–801

    Article  CAS  PubMed  Google Scholar 

  14. Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:1–33

    Article  CAS  Google Scholar 

  15. Liu W, Zhao X, Wang T, Zhao D, Ni J (2016) Adsorption of U (VI) by multilayer titanate nanotubes: effects of inorganic cations, carbonate and natural organic matter. Chem Eng J 286:427–435

    Article  CAS  Google Scholar 

  16. Liu M, Zhao G, Tang Y, Yu Z, Lei Y, Li M, Zhang Y, Li D (2010) A simple, stable and picomole level lead sensor fabricated on DNA-based carbon hybridized TiO2 nanotube arrays. Environ Sci Technol 44:4241–4246

    Article  CAS  PubMed  Google Scholar 

  17. Nguyen PKQ, Lunsford SK (2012) Electrochemical response of carbon paste electrode modified with mixture of titanium dioxide/zirconium dioxide in the detection of heavy metals: lead and cadmium. Talanta 101:110–121

    Article  CAS  PubMed  Google Scholar 

  18. Zhang J, Liao J, Yang F, Xu M, Lin S (2017) Regulation of the electroanalytical performance of ultrathin titanium dioxide nanosheets toward lead ions by non-metal doping. Nanomaterials 7:327

    Article  PubMed  PubMed Central  Google Scholar 

  19. Luan Y, Jing L, Meng Q, Nan H, Luan P, Xie M, Feng Y (2012) Synthesis of efficient nanosized rutile TiO2 and its main factors determining its photodegradation activity: roles of residual chloride and adsorbed oxygen. J Phys Chem C 116:17094–17100

    Article  CAS  Google Scholar 

  20. Shao G-S, Ma T-Y, Zhang X-J, Ren T-Z, Yuan Z-Y (2009) Phosphorus and nitrogen co-doped titania photocatalysts with a hierarchical meso-/macroporous structure. J Mater Sci 44:6754–6763

    Article  CAS  Google Scholar 

  21. Yu H-F (2007) Photocatalytic abilities of gel-derived P-doped TiO2. J Phys Chem Solids 68:600–607

    Article  CAS  Google Scholar 

  22. Sanz J, Iglesias J, Soria J, Losilla E, Aranda M, Bruque S (1997) Structural disorder in the cubic 3× 3× 3 superstructure of TiP2O7 XRD and NMR study. Chem Mater 9:996–1003

    Article  CAS  Google Scholar 

  23. Hao Y, Wu C, Cui Y, Xu K, Yuan Z, Zhuang Q (2014) Preparation and electrochemical performances of submicro-TiP 2 O 7 cathode for lithium ion batteries. Ionics 20:1079–1085

    Article  CAS  Google Scholar 

  24. Sun Y, Gai L, Zhou Y, Zuo X, Zhou J, Jiang H (2014) Polyhierarchically structured TiP 2 O 7/C microparticles with enhanced electrochemical performance for lithium-ion batteries. CrystEngComm 16:10681–10691

    Article  CAS  Google Scholar 

  25. Wen Y, Chen L, Pang Y, Guo Z, Bin D, Wang Y-G, Wang C, Xia Y (2017) TiP2O7 and expanded graphite nanocomposite as anode material for aqueous lithium-ion batteries. ACS Appl Mater Interfaces 9:8075–8082

    Article  CAS  PubMed  Google Scholar 

  26. Cheng Y, Li H, Fang C, Ai L, Chen J, Su J, Zhang Q, Fu Q (2019) Facile synthesis of reduced graphene oxide/silver nanoparticles composites and their application for detecting heavy metal ions. J Alloy Compd 787:683–693

    Article  CAS  Google Scholar 

  27. Han T, Jin J, Wang C, Sun Y, Zhang Y, Liu Y (2017) Ag nanoparticles-modified 3D graphene foam for binder-free electrodes of electrochemical sensors. Nanomaterials 7:40

    Article  PubMed  PubMed Central  Google Scholar 

  28. Xing S, Xu H, Chen J, Shi G, Jin L (2011) Nafion stabilized silver nanoparticles modified electrode and its application to Cr (VI) detection. J Electroanal Chem 652:60–65

    Article  CAS  Google Scholar 

  29. Narang J, Chauhan N, Jain P, Pundir C (2012) Silver nanoparticles/multiwalled carbon nanotube/polyaniline film for amperometric glutathione biosensor. Int J Biol Macromol 50:672–678

    Article  CAS  PubMed  Google Scholar 

  30. Abdel-Hameed SA, Fathi AM (2010) Preparation and characterization of silver nanoparticles within silicate glass ceramics via modification of ion exchange process. J Alloy Compd 498:71–76

    Article  CAS  Google Scholar 

  31. Afifi M, Ahmed M, Fathi A, Uskoković V (2020) Physical, electrochemical and biological evaluations of spin-coated ε-polycaprolactone thin films containing alumina/graphene/carbonated hydroxyapatite/titania for tissue engineering applications. Int J Pharm 585:119502

    Article  CAS  PubMed  Google Scholar 

  32. Liu H, Liu S, Zhang Z, Dong X, Liu T (2016) Hydrothermal etching fabrication of TiO2@ graphene hollow structures: mutually independent exposed 001 and 101 facets nanocrystals and its synergistic photocaltalytic effects. Sci Rep 6:33839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Petersen H, Stegmann N, Fischer M, Zibrowius B, Radev I, Philippi W, Schmidt W, Weidenthaler C (2021) Crystal structures of two titanium phosphate-based proton conductors: ab initio structure solution and materials properties. Inorg Chem 61:2379–2390

    Article  PubMed  PubMed Central  Google Scholar 

  34. Marcu I-C, Sandulescu I, Millet J-MM (2003) Effects of the method of preparing titanium pyrophosphate catalyst on the structure and catalytic activity in oxidative dehydrogenation of n-butane. J Mol Catal A: Chem 203:241–250

    Article  CAS  Google Scholar 

  35. Merroun Y, Chehab S, Ghailane T, Ghailane R, Boukhris S, Habbadi N, Hassikou A, Lakhrissi B, Souizi A (2020) Comparative study between the titanium phosphate TiP2O7 and the phosphate fertilizers in the catalysis of the quinazolin-4 (3H)-one derivatives synthesis, Mediterranean. J Chem 10:553–567

    CAS  Google Scholar 

  36. Soria J, Iglesias J, Sanz J (1993) Effect of calcination on titanium phosphate produced by H 3 PO 4 treatment of anatase. J Chem Soc, Faraday Trans 89:2515–2518

    Article  CAS  Google Scholar 

  37. Bharti B, Kumar S, Lee H-N, Kumar R (2016) Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci Rep 6:32355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qiu M, Tian Y, Chen Z, Yang Z, Li W, Wang K, Wang L, Wang K, Zhang W (2016) Synthesis of Ti 3+ self-doped TiO 2 nanocrystals based on Le Chatelier’s principle and their application in solar light photocatalysis. RSC Adv 6:74376–74383

    Article  CAS  Google Scholar 

  39. Jeong S-H, Kim J-K, Kim B-S, Shim S-H, Lee B-T (2004) Characterization of SiO2 and TiO2 films prepared using rf magnetron sputtering and their application to anti-reflection coating. Vacuum 76:507–515

    Article  CAS  Google Scholar 

  40. Fathi A, Handal H (2023) The Enhancement of TiO2 Nanotubes performance towards methanol oxidation after surface functionalization with exfoliated graphene and nickel oxides. Electrochim Acta 462:142667

    Article  CAS  Google Scholar 

  41. Zhang F, Wolf G, Wang X, Liu X (2001) Surface properties of silver doped titanium oxide films. Surf Coat Technol 148:65–70

    Article  CAS  Google Scholar 

  42. Malas A, Bharati A, Verkinderen O, Goderis B, Moldenaers P, Cardinaels R (2017) Effect of the GO reduction method on the dielectric properties, electrical conductivity and crystalline behavior of PEO/rGO nanocomposites. Polymers 9:613

    Article  PubMed  PubMed Central  Google Scholar 

  43. Peng F, Cai L, Yu H, Wang H, Yang J (2008) Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity. J Solid State Chem 181:130–136

    Article  CAS  Google Scholar 

  44. Nakamura R, Tanaka T, Nakato Y (2004) Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes. J Phys Chem B 108:10617–10620

    Article  CAS  Google Scholar 

  45. Baunack S, Oswald S, Scharnweber D (1998) Depth distribution and bonding states of phosphorus implanted in titanium investigated by AES. XPS and SIMS, Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films 26:471–479

    Article  CAS  Google Scholar 

  46. Jani NA, Haw C, Chiu W, Rahman SA, Khiew P, Lim Y, Abd-Shukor R, Hamid MAA (2020) Photodeposition of Ag nanocrystals onto TiO2 nanotube platform for enhanced water splitting and hydrogen gas production. J Nanomater 2020:1–11

    Article  Google Scholar 

  47. Zhu L, Lu Q, Lv L, Wang Y, Hu Y, Deng Z, Lou Z, Hou Y, Teng F (2017) Ligand-free rutile and anatase TiO 2 nanocrystals as electron extraction layers for high performance inverted polymer solar cells. RSC Adv 7:20084–20092

    Article  CAS  Google Scholar 

  48. Spinelli P, Polman A (2012) Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles. Opt Express 20:A641–A654

    Article  CAS  PubMed  Google Scholar 

  49. Mansour A, Fathi A, Abou Hammad AB, El Nahrawy AM (2023) Microstructures, optical and electrochemical properties of advanced Fe0 8Se0 14Si0 06MoO4 nanocrystalline for energy storage applications. Phys Scr 98:055922

    Article  Google Scholar 

  50. Sugapriya S, Sriram R, Lakshmi S (2013) Effect of annealing on TiO2 nanoparticles. Optik 124:4971–4975

    Article  CAS  Google Scholar 

  51. Haque FZ, Nandanwar R, Singh P (2017) Evaluating photodegradation properties of anatase and rutile TiO2 nanoparticles for organic compounds. Optik 128:191–200

    Article  CAS  Google Scholar 

  52. Taleshi F, Pahlavan A (2014) Effect of rapid cooling time on optical absorption and band gap energy of TiO 2 nanoparticles. J Mater Sci Mater Electron 25:2450–2455

    Article  CAS  Google Scholar 

  53. Al-Shabib NA, Husain FM, Qais FA, Ahmad N, Khan A, Alyousef AA, Arshad M, Noor S, Khan JM, Alam P (2020) Phyto-mediated synthesis of porous titanium dioxide nanoparticles from Withania somnifera root extract: broad-spectrum attenuation of biofilm and cytotoxic properties against HepG2 cell lines. Front Microbiol 11:1680

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fathi A, Shehata O, Abdel-Karim A (2019) The photoactivity and electrochemical behavior of porous titania (TiO2) in simulated saliva for dental implant application. Silicon 11:2353–2363

    Article  CAS  Google Scholar 

  55. Klang C (2010) Effects of UV-exposure of titanium-based dental implant materials

  56. Sun L, Zhang S, Sun X, He X (2010) Effect of the geometry of the anodized titania nanotube array on the performance of dye-sensitized solar cells. J Nanosci Nanotechnol 10:4551–4561

    Article  CAS  PubMed  Google Scholar 

  57. Tang X, Li D (2008) Sulfur-doped highly ordered TiO2 nanotubular arrays with visible light response. J Phys Chem C 112:5405–5409

    Article  CAS  Google Scholar 

  58. Estephane G, Kassir M, El Jamal M (2020) Kinetic study of the metal ions doped TiO2 samples for the photocatalytic degradation of E 131 VF, Portugaliae. Electrochim Acta 38:365–376

    Article  CAS  Google Scholar 

  59. Liu R, Wang P, Wang X, Yu H, Yu J (2012) UV- and visible-light photocatalytic activity of simultaneously deposited and doped Ag/Ag(I)-TiO2 photocatalyst. J Phys Chem C 116:17721–17728

    Article  CAS  Google Scholar 

  60. Mohamed AER, Rohani S (2011) Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review. Energy Environ Sci 4:1065–1086

    Article  CAS  Google Scholar 

  61. Hadidi M, Ahour F, Keshipour S (2021) Electrochemical determination of trace amounts of lead ions using D-penicillamine-functionalized graphene quantum dot-modified glassy carbon electrode. J Iran Chem Soc 19

  62. Randles JE (1948) A cathode ray polarograph. Part II.—The current-voltage curves. Trans Faraday Soc 44:327–338

    Article  CAS  Google Scholar 

  63. Mourya A, Mazumdar B, Sinha SK (2019) Determination and quantification of heavy metal ion by electrochemical method. J Environ Chem Eng 7:103459

    Article  CAS  Google Scholar 

  64. Sengupta P, Pramanik K, Sarkar P (2021) Simultaneous detection of trace Pb (II), Cd (II) and Hg (II) by anodic stripping analyses with glassy carbon electrode modified by solid phase synthesized iron-aluminate nano particles. Sens Actuators, B Chem 329:129052

    Article  CAS  Google Scholar 

  65. Zhang W, Fan S, Li X, Liu S, Duan D, Leng L, Cui C, Zhang Y, Qu L (2020) Electrochemical determination of lead (II) and copper (II) by using phytic acid and polypyrrole functionalized metal-organic frameworks. Microchim Acta 187:1–9

    Google Scholar 

  66. Wei Y, Gao C, Meng F-L, Li H-H, Wang L, Liu J-H, Huang X-J (2012) SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium (II), lead (II), copper (II), and mercury (II): an interesting favorable mutual interference. J Phys Chem C 116:1034–1041

    Article  CAS  Google Scholar 

  67. Kiliç HD, Kizil H (2019) Simultaneous analysis of Pb 2+ and Cd 2+ at graphene/bismuth nanocomposite film-modified pencil graphite electrode using square wave anodic stripping voltammetry. Anal Bioanal Chem 411:8113–8121

    Article  PubMed  Google Scholar 

  68. Erçarıkcı E, Alanyalıoğlu M (2021) Dual-functional graphene-based flexible material for membrane filtration and electrochemical sensing of heavy metal ions. IEEE Sens J 21:2468–2475

    Article  Google Scholar 

  69. Liu Y, Wu S, Xiong W, Li H (2023) Interface co-assembly synthesis of magnetic Fe3O4@mesoporous carbon for efficient electrochemical detection of Hg(II) and Pb(II). Adv Mater Interfaces 10:2201631

    Article  CAS  Google Scholar 

  70. Sivan SK, Shankar NS SS, Kandambath Padinjareveetil A, Pilankatta R, Kumar VS, Mathew B, George B, Makvandi P, Černík M (2020) Fabrication of a greener TiO2@ gum Arabic-carbon paste electrode for the electrochemical detection of pb2+ ions in plastic toys. ACS Omega 5:25390–25399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mekawi E (2015) Drinking water quality: chemical evaluation of tap water and bottled water in Egypt. Indian J of Applied Res 5:664–667

    Google Scholar 

  72. Tüzün E, Atun G (2023) Individual and simultaneous determination of heavy metal ions using carbon paste electrode modified with titania nanoparticles. Electrocatalysis 14:636

    Article  Google Scholar 

  73. Ma H, An R, Chen L, Fu Y, Ma C, Dong X, Zhang X (2015) A study of the photodeposition over Ti/TiO2 electrode for electrochemical detection of heavy metal ions. Electrochem Commun 57:18–21

    Article  CAS  Google Scholar 

  74. Cheng X-L, Xu Q-Q, Li S-S, Li J, Zhou Y, Zhang Y, Li S (2021) Oxygen vacancy enhanced Co3O4/ZnO nanocomposite with small sized and loose structure for sensitive electroanalysis of Hg (II) in subsidence area water. Sens Actuators, B Chem 326:128967

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the approval and the support of this research study by the grant no. SCIA-2022-11-1546 from the Deanship of Scientific Research at Northern Border University, Arar, K.S.A.

Funding

Northern Border University, Arar, K.S.A., SCIA-2022-11-1546, A.M. Elbasiony.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Fathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbasiony, A.M., Saleh, M.G.A., Ahmed, A.O. et al. Electrochemical fabrication of TiO2/TiP2O7 and Ag/TiO2/TiP2O7 nanocomposites for heavy metal detection and methylene blue dye degradation. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05895-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05895-6

Keywords

Navigation