Skip to main content
Log in

Are the entropy changes important in an electrochemical process?

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Entropy is one of the less discussed and analyzed among the state functions studied in the thermodynamics of electrochemical systems. Few universities and post-graduate Electrochemistry courses and textbooks deal with this function’s basic aspects. Consequently, the importance of its practical applications needs to be thoroughly studied. Entropy changes are related to the reversible heat released or absorbed in electrochemical reactions. This reversible heat is also named molar electrochemical Peltier heat, which phenomenologically differs from the conventional Peltier heat used in physics and thermoelectric theory. In a simple and detailed manner, this manuscript presents fundamental concepts plus practical and experimental aspects for quantifying entropy changes and the associated molar electrochemical Peltier heat effects in a reversible and isothermal half-cell electrochemical reaction.

The differences between the conventional and molar electrochemical Peltier heat are also presented. Electrochemistry professors can use the material included here to encourage university and post-graduate students to further their knowledge and understanding of the electrochemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wedler G (1987) Lehrbuch der Physikalische Chemie, VCH Ed. Weinheim

  2. Scholz F (2010) Thermodynamics of electrochemical reactions, Electroanalytical Methods, Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-02915-8_2

  3. Inzelt G (2015) Crossing the bridge between thermodynamics and electrochemistry. From the potential of the cell reaction to the electrode potential. ChemTexts. https://doi.org/10.1007/s40828-014-0002-9

  4. Fang Z (2011) in Thermodynamics-physical chemistry of aqueous systems, edited by Moreno Pirajn, J. C. (InTech), Chap. 2. https://doi.org/10.5772/1434

  5. Bouty M (1879) Sur un phénomène analogue au phénomène de Peltier. J Phys Theor Appl. https://doi.org/10.1051/jphystap:018790080034101

    Article  Google Scholar 

  6. Schuster R (2017) Electrochemical microcalorimetry at single electrodes. Curr Opin Electrochem. https://doi.org/10.1016/j.coelec.2017.01.007

    Article  Google Scholar 

  7. Barragan JA, Alemán JR, Peregrina-Lucano AA, Sánchez-Amaya M, Rivero P, Larios-Duran ER (2021) Leaching metals from e-waste: from its thermodynamic analysis and design to its implementation and optimization. ACS Omega. https://doi.org/10.1021/acsomega.1c00724

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bandhauer TM, Garimella S, Fuller TF (2011) A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc doi 10(1149/1):3515880

    Google Scholar 

  9. Fang Z (2011) Some basic matters on the heat effects at electrode-electrolyte interfaces. Thermochim Acta. https://doi.org/10.1016/j.tca.2011.01.017

    Article  Google Scholar 

  10. Vetter KJ (1967) Electrochemical kinetics: theoretical and experimental aspects. Academic Press, New York

    Google Scholar 

  11. Berry RS, Rice ST, Ross J (1980) Physical Chemistry. John Wiley & Sons, New York

    Google Scholar 

  12. Sun P, Kumar KR, Lyu M, Wang Z, Xiang J, Zhang W (2021) Generic Seebeck effect from spin entropy. The Innovation. https://doi.org/10.1016/j.xinn.2021.100101

    Article  PubMed  PubMed Central  Google Scholar 

  13. Boudeville P (1994) Thermometric determination of electrochemical Peltier heat (thermal effect associated with electron transfer) of some redox couples. Inorganica Chim. Acta. https://doi.org/10.1016/0020-1693(94)04072-9

  14. Agar JN (1963) in Advances in electrochemistry and electrochemical engineering, edited by Delahay P (Interscience), Vol. 5, Chap. 2. New-York

  15. Lange E, Göhr H (1962) Thermodynamische elektrochemie. Alfred Hüthig Verlag, Heidelberg, Dr

    Google Scholar 

  16. Ozeki T, Watanabe I, Ikeda S (1983) Analysis of copper(I) ion in chloride solution with cyclic-voltammo-thermometry. J Electroanal Chem Interfacial Electrochem. https://doi.org/10.1016/S0022-0728(83)80031-X

    Article  Google Scholar 

  17. Ozeki T, Ogawa N, Aikawa K, Watanabe I, Ikeda S (1983) Thermal analysis of electrochemical reactions: influence of electrolytes on Peltier heat for Cu(0)/Cu(II) and Ag(0)/Ag(I) redox systems. J Electroanal Chem Interfacial Electrochem. https://doi.org/10.1016/S0022-0728(83)80293-9

    Article  Google Scholar 

  18. Boudeville P, Tallec A (1988) Electrochemistry and calorimetry coupling: IV. Determination of electrochemical peltier heat. Thermochim Acta. https://doi.org/10.1016/0040-6031(88)87268-X

  19. Bard AJ, Inzelt G, Scholz F (2008) Electrochemical Dictionary. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74598-3

    Article  Google Scholar 

  20. Atkins P (1990) Physikalische Chemie, VCH Ed. Weinheim

  21. Sanchez-Amaya M, Scholz F, Bárcena-Soto M, et al. (2022) Review—the thermistor-electrode as a temperature sensor to obtain thermodynamic data of electrochemical systems. ECS Advances. 10.1149/ 2754–2734/ac77a1

  22. Bárcena-Soto M, Kubsch G, Scholz F (2002) Cyclic voltammetry of immobilized microparticles with in situ calorimetry: part I: the thermistor electrode. J Electroanal Chem. https://doi.org/10.1016/S0022-0728(02)00892-6

    Article  Google Scholar 

  23. Forker W (1966) «Elektrochemische Kinetik,» Akademie-Verlag. Berlin

  24. Ozeki T, Watanabe I, Ikeda S (1979) The application of the thermistor- electrode to Peltier heat measurement. J Electroanal Chem Interfacial Electrochem. https://doi.org/10.1016/S0022-0728(79)80308-3

    Article  Google Scholar 

  25. Kuhn AT, Shams El Din AS (1983) Thermometric and calorimetric methods in electrochemical and corrosion studies. Surface Technology. https://doi.org/10.1016/0376-4583(83)90077-8

    Article  Google Scholar 

  26. Sanchez-Amaya M, Bárcena-Soto M, Rodríguez-López A, Antaño-López R, Larios-Durán ER (2020) Sinusoidal temperature variation response associated with electrochemical Peltier heat as a transfer function approach. Electrochem Commun. https://doi.org/10.1016/J.ELECOM.2020.106769

  27. Sánchez-Amaya M, Bárcena-Soto M, Antaño-López R, Rodríguez- López A, Gutiérrez-Becerra A, Larios-Durán ER (2021) Frequency responses of molar electrochemical Peltier heat and entropy changes analyzed as thermometric transfer functions. J Electrochem Soc. https://doi.org/10.1149/1945-7111/AC38F3

    Article  Google Scholar 

  28. Hernández-Rizo SG, Larios-Durán ER, Bárcena-Soto M (2023) Frequency response of Gibbs free energy and enthalpy changes of electrochemical systems analyzed as thermometric transfer functions. J Solid State Electrochem. https://doi.org/10.1007/s10008-023-05553-3

    Article  Google Scholar 

  29. Dean JA (1999) Lange’s Handbook of Chemistry, 15th edn. McGraw-Hill, New York

    Google Scholar 

  30. Fang Z, Wang S, Zhang Z, Qiu G (2008) The electrochemical Peltier heat of the standard hydrogen electrode reaction. Thermochim Acta. https://doi.org/10.1016/j.tca.2008.04.002

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank CONAHCyT for the financial support to the project CF-2096004.

Funding

CONAHCyT supported this work through project CF-2096004.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. R. Larios-Durán or M. Bárcena-Soto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larios-Durán, E.R., Bárcena-Soto, M. Are the entropy changes important in an electrochemical process?. J Solid State Electrochem 28, 995–1006 (2024). https://doi.org/10.1007/s10008-023-05787-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05787-1

Keywords

Navigation