Skip to main content
Log in

Chemically modifying electrodes—a classical tool box

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The paper provides a detailed overview of heterogeneous chemical reactions leading to the electrode surface modification and further reactivity of various functionalized surfaces. Notably, the present paper is different from other typical reviews and books about chemically modified electrodes—it is not aimed at highlighting the recent achievements in the research area, but provides a detailed analysis of the area background produced about 30–50 years ago. While there are many reviews on the present state-of-the-art (mostly describing specific applications), the background of the research area is not well remembered, particularly by young researchers and students. Therefore, the paper is mainly aimed at educational aspects, rather than highlighting the modern applications, which are only briefly mentioned in the concluding section. The chemical structures exemplified in the paper represent a comprehensive collection of the systems produced by various modification reactions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The present review article is the second paper on the same topic published in the Special Issue. The Motivation/Justification and Introduction sections are partially repeated from the first article for the readers’ convenience.

References

  1. Alkire RC, Kolb DM, Lipkowski J, Ross PN (2009) Chemically modified electrodes. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Snell KD, Keenan AG (1979) Surface modified electrodes. Chem Soc Rev 8:259–282

    Article  CAS  Google Scholar 

  3. Murray RW (1980) Chemically modified electrodes. Acc Chem Res 13:135–141

    Article  CAS  Google Scholar 

  4. Albery WJ, Hillman AJ (1981) Modified electrodes Annu Repts Progr Chem C78:377–437

    Article  Google Scholar 

  5. Johnson DC, Ryan MD, Wilson GS (1986) Dynamic electrochemistry: methodology and application. Anal Chem 58:33R-49R

    Article  CAS  Google Scholar 

  6. Murray RW, Ewing AG, Durst RA (1987) Chemically modified electrodes. Molecular design for electrocatalysis Anal Chem 59:379A-390A

    CAS  Google Scholar 

  7. Linford RG (ed) (1987) Electrochemical science and technology of polymers. Elsevier, New York

    Google Scholar 

  8. Murray RW (1984) Polymer modification of electrodes. Ann Rev Mater Sci 14:145–169

    Article  ADS  CAS  Google Scholar 

  9. Degrand C (1985) Electron-transfer in quinonoid modified electrodes—mediated and catalytic applications. Annali Chimica 75:1–18

    CAS  Google Scholar 

  10. Kakhki RM (2019) A review to recent developments in modification of carbon fiber electrodes. Arabian J Chem 12(7):1783–1794

    Article  Google Scholar 

  11. Zak J, Kuwana T (1983) Chemically modified electrodes and electrocatalysis. J Electroanal Chem 150:645–664

    Article  CAS  Google Scholar 

  12. Gorton L (1986) Chemically modified electrodes for the electrocatalytic oxidation of nicotinamide coenzymes. J Chem Soc Faraday Trans 1(82):1245–1258

    Article  Google Scholar 

  13. Katz E, Shkuropatov AY, Shuvalov VA (1990) Electrochemical approach to the development of a photoelectrode on the basis of photosynthetic reaction centers. Bioelectrochem Bioenerg 23:239–247

    Article  CAS  Google Scholar 

  14. Armstrong FA, Hill HAO, Walton NJ (1986) Reactions of electron-transfer proteins at electrodes. Q Rev Biophys 18:261–322

    Article  Google Scholar 

  15. Armstrong FA, Hill HAO, Walton NJ (1988) Direct electrochemistry of redox proteins. Acc Chem Res 21:407–413

    Article  CAS  Google Scholar 

  16. Frew JE, Hill HAO (1988) Direct and indirect electron transfer between electrodes and redox proteins. Eur J Biocriem 172:261–269

    Article  CAS  Google Scholar 

  17. Cardosi FM, Turner APF (1987) The realization of electron transfer from biological molecules to electrodes. in: Turner APF, Karube I, Wilson GS (Eds.), Biosensors. Fundamentals and Applications, Chapter 15, 257–275, Oxford University Press, Oxford

  18. Frew JE, Hill HAO (1987/1988) Electrochemical biosensors. Anal Chem 59:933A–944

  19. Ciucu AA (2014) Chemically modified electrodes in biosensing. J Biosens Bioelectron 5:154

    Google Scholar 

  20. Bartlett PN, Whitaker RG (1987/1988) Strategies for the development of amperometric enzyme electrodes. Biosensors 3:359–379

  21. Bollella P, Katz E (2020) Biosensors—recent advances and future challenges. Sensors (MDPI) 20:6645

    Article  ADS  Google Scholar 

  22. Smutok O, Katz E (2023) Biosensors: electrochemical devices—general concepts and performance. Biosensors (MDPI) 13:44

    Article  CAS  Google Scholar 

  23. Katz E, Bollella P (2021) Fuel cells and biofuel cells: from past to perspectives. Isr J Chem 61:68–84

    Article  CAS  Google Scholar 

  24. Bain CD, Whitesides GM (1989) Modeling organic surfaces with self-assemble monolayers. Angew Chem Adv Mater 101:522–528

    Article  ADS  CAS  Google Scholar 

  25. Ulman A (1991) An introduction to ultrathin organic films. From Langmuir-Blodgett to self-assembly. Academic Press, Boston

  26. Gilpin RK, Burke MF (1973) Role of tri- and dimethylsilanes in tailoring chromatographic adsorbents. Anal Chem 45(8):1383–1389

    Article  CAS  Google Scholar 

  27. Lisichkin GV (Ed) (1986) Modified silica for sorption, catalysis and chromatography. Moscow, Khimiya, 1986 (in Russian: Moдифициpoвaнныe кpeмнeзeмы в copбции, кaтaлизe и xpoмaтoгpaфии, Лиcичкин Г. B. (peдaктop), M., Xимия, 1986)

  28. Kirkov P (1972) The electrochemistry of the tin oxide semiconductor - I. The establishment of mechanisms at polarized n-type tin oxide. Electrochim Acta 17(3):519–532

  29. Moses PR, Wier L, Lennox JC, Finklea HO, Lenhard JR, Murray RW (1978) X-ray photoelectron spectroscopy of alkylamine-silanes bound to metal oxide electrodes 50(4):576–585

    CAS  Google Scholar 

  30. Yates DJC (1961) Infrared studies of the surface hydroxyl groups on titanium dioxide, and of the chemisorption of carbon monoxide and carbon dioxide. J Phys Chem 65(5):746–753

    Article  CAS  Google Scholar 

  31. Thornton EW, Harrison PG (1975) Tin oxide surfaces. Part 1.Surface hydroxyl groups and the chemisorption of carbon dioxide and carbon monoxide on yin(IV) oxide. J Chem Soc Faraday Trans 1 (3):461–472

  32. Finklea HO, Vithanage R (1982) Infrared absorption spectroscopy of chemically modified titanium dioxide. J Phys Chem 86(18):3621–3626

    Article  CAS  Google Scholar 

  33. Feher FJ, Newman DA (1990) Enhanced silylation reactivity of a model for silica surfaces. J Amer Chem Soc 112(5):1931–1936

    Article  CAS  Google Scholar 

  34. Murray RW (1984) Chemically modified electrodes. In: Electroanal Chem, Bard AJ (Ed) Marcel Dekker, NY, 13:191–368

  35. Fischer AB, Wrighton MS, Umaña M, Murray RW (1979) An X-ray photoelectron spectroscopic study of multilayers of an electroactive ferrocene derivative attached to platinum and gold electrodes. J Amer Chem Soc 101(13):3442–3446

    Article  CAS  Google Scholar 

  36. Widrig CA, Majda M (1987) Mediated, thin-layer cell, coulometric determination of monomolecular films of trichlorosilane viologen derivatives at gold and nonconducting surfaces. Anal Chem 59(5):754–760

    Article  CAS  Google Scholar 

  37. Proctor A, Castner JF, Wingard LB Jr, Hercules DM (1985) Electron spectroscopic (ESCA) studies of platinum surfaces used for enzyme electrodes. Anal Chem 57(8):1644–1649

    Article  CAS  PubMed  Google Scholar 

  38. Angerstein-Kozlowska H, Conway BE, Sharp WBA (1973) The real condition of electrochemically oxidized platinum surfaces. Part I. Resolution of component processes. J Electroanal Chem 43:9–36

    Article  CAS  Google Scholar 

  39. Burke LD, Roche MBC (1984) Hydrous oxide formation on platinum—a useful route to controlled platinization. J Electroanal Chem 164:315–334

    Article  CAS  Google Scholar 

  40. Facci J, Murray RW (1980) Silanization and non-aqueous electrochemistry of two oxide states on platinum electrodes. J Electroanal Chem 112(2):221–229

    Article  CAS  Google Scholar 

  41. Lenhard JR, Murray RW (1977) Chemically modified electrodes: Part VII. Covalent bonding of a reversible electrode reactant to Pt electrodes using an organosilane reagent. J Electroanal Chem 78(1):195–201

  42. Woods R (1978) Chemisorption at electrodes: hydrogen and oxygen on noble metals and their alloys. In: Electroanal Chem 9:1–162. Bard AJ (Ed), Marcel Dekker, NY

  43. Bocarsly AB, Galvin SA, Sinha S (1983) Properties of chemically derivatized nickel electrodes: The synthesis of an electrocatalytic interface. J Electrochem Soc 130(6):1319–1325

    Article  CAS  Google Scholar 

  44. Safronov AY, Kristensen PA (1990) IR-Spectral characterization of a gold electrode surface in solutions with different pH values. Elektrokhimiya (USSR) 26(7):869–873 (in Russian)

    CAS  Google Scholar 

  45. Vázquez L, Gómez J, Baró AM, García N, Marcos ML, Gonzíles Velasco J, Vara JM, Arvia AJ, Presa J, Garsía A, Aguilar M (1987) Scanning tunneling microscopy of electrochemically activated platinum surfaces. A direct ex-situ determination of the electrode nanotopography. J Amer Chem Soc 109(6):1730–1733

  46. Finklea HO, Robinson LR, Blackburn A, Richter B (1986) Formation of an organized monolayer by solution adsorption of octadecyltrichlorosilane on gold: electrochemical properties and structural characterization. Langmuir 2(2):239–244

    Article  CAS  Google Scholar 

  47. Armstrong NR, Shepard VR Jr (1980) Voltammetric studies of silane-modified SnO2 surfaces in selected aqueous and non-aqueous media. J Electroanal Chem 115:253–265

    Article  CAS  Google Scholar 

  48. Tillman N, Ulman A, Penner TL (1989) Formation of multilayers by self-assembly. Langmuir 5(1):101–111

    Article  CAS  Google Scholar 

  49. Ulman A, Tillman N (1989) Self-assembling double layers on gold surfaces: The merging of two chemistries. Langmuir 5(6):1418–1420

    Article  CAS  Google Scholar 

  50. Daube KA, Harrison DJ, Mallouk TE, Ricco AJ, Chao S, Wrighton MS, Hendrickson WA, Drube AJ (1985) Electrode-confined catalyst systems for use in optical-to-energy conversion. J Photochem 29:71–88

    Article  CAS  Google Scholar 

  51. Razumas VJ, Jasaitis JJ, Kulys JJ (1984) 700 – Electrocatalysis on enzyme-modified carbon materials. Bioelectrochem Bioenerg 12:297–322

    Article  CAS  Google Scholar 

  52. Tarasevich MR (1984) Electrochemistry of carbon materials. Moscow, Nauka (in Russian: Tapaceвич MP, Элeктpoxимия yглepoдныx мaтepиaлoв. M.: Hayкa)

  53. Puri BR (1970) In: Chem Phys Carbon 6:191–282. Walker PL, Jr, (Ed.) Marcel Dekker

  54. Mattson JS, Mark HB Jr (1971) Activated carbon. Marcel Dekker, NY

    Google Scholar 

  55. Evans JF, Kuwana T (1977) Radiofrequency oxygen plasma treatment of pyrolytic graphite electrode surfaces. Anal Chem 49(11):1632–1635

    Article  CAS  Google Scholar 

  56. Čėnas NK, Kanapienienė JJ, Kulys JJ (1985) Electrocatalytic oxidation of NADH on carbon black electrodes. J Electroanal Chem 189:163–169

    Article  Google Scholar 

  57. Dautartas MF, Evans JF, Kuwana T (1979) Studies of o-tolidine attachment to pyrolytic graphite electrodes via cyanuric chloride. Anal Chem 51(1):104–110

    Article  CAS  Google Scholar 

  58. Watkins BF, Behling JR, Kariv E, Miller LL (1975) A chiral electrode. J Amer Chem Soc 97(12):3549–3550

    Article  CAS  Google Scholar 

  59. Koval CA, Anson FC (1978) Electrochemistry of the ruthenium(3+,2+) couple attached to graphite electrodes. Anal Chem 50(2):223–229

    Article  CAS  Google Scholar 

  60. Jester CP, Rocklin RD, Murray RW (1980) Electron transfer and axial coordination reactions of cobalt tetra(aminophenyl)porphyrins covalently bonded to carbon electrodes. J Electrochem Soc 127(9):1979–1985

    Article  CAS  Google Scholar 

  61. Yacynych AM, Kuwana T (1978) Cyanuric chloride as a general linking agent for modified electrodes: attachment of redox groups to pyrolytic graphite. Anal Chem 50(4):640–645

    Article  CAS  Google Scholar 

  62. Sharp M (1978) A possible orientation effect in redox reactions of molecules which are chemically bound to electrode surfaces. Electrochim Acta 23(3):287–288

    Article  CAS  Google Scholar 

  63. Matsue T, Fujihira M, Osa T (1979) Selective chlorination with a cyclodextrin-modified electrode. J Electrochem Soc 126(3):500–501

    Article  CAS  Google Scholar 

  64. Matsue T, Fujihira M, Osa T (1981) Selective electrosyntheses on chemically modified electrodes: III. Regio-selective anodic chlorination of some benzene derivatives with a cyclodextrin chemically modified electrode. J Electrochem Soc 128(7):1473–1478

  65. Kamin RA, Wilson GS (1980) Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal Chem 52(8):1198–1205

    Article  CAS  Google Scholar 

  66. Larsson R, Johansson LY, Jonsson L (1981) The electrochemical properties of imidazol-linked iron phthalocyanine- carbon electrodes. J Appl Electrochem 11(4):489–492

    Article  CAS  Google Scholar 

  67. Gomathi H, Rao GP (1985) Chemical and electrochemical modification of the glassy carbon surface with quinhydrone. J Electroanal Chem 190:85–94

    Article  CAS  Google Scholar 

  68. Osborn JA, Ianniello RM, Wieck HJ, Decker TF, Gordon SL, Yacynych AM (1982) Use of chemically modified activated carbon as a support for immobilized enzymes. Biotechnol Bioeng 24:1653–1669

    Article  CAS  PubMed  Google Scholar 

  69. Bourdillon C, Bourgeois J-P, Thomas D (1979) Chemically modified electrodes bearing grafted enzymes. Biotech Bioeng 21(10):1877–1879

    Article  CAS  Google Scholar 

  70. Bourdillon C, Bourgeois JP, Thomas D (1980) Covalent linkage of glucose oxidase on modified glassy carbon electrodes. Kinetic phenomena J Amer Chem Soc 102(12):4231–4235

    Article  CAS  Google Scholar 

  71. Bourdillon C, Thomas V, Thomas D (1982) Electrochemical study of D-glucose oxidase autoinactivation. Enzyme Microbial Technol 4(3):175–180

    Article  Google Scholar 

  72. Ianniello RM, Lindsay TJ, Yacynych AM (1982) Immobilized xanthine oxidase chemically modified electrode as a dual analytical sensor. Anal Chem 54(12):1980–1984

    Article  CAS  Google Scholar 

  73. Laval JM, Bourdillon C (1983) Modified glassy carbon electrode with immobilized enazyme NAD/NADH lactic dehydrogenase. J Electroanal Chem 152(1/2):125–141

    Article  CAS  Google Scholar 

  74. Rosen I, Rishpon J (1989) Alkaline phosphatase as a label for a heterogeneous immunoelectrochemical sensor. An electrochemical study J Electroanal Chem 258:27–39

    Article  CAS  Google Scholar 

  75. Bianco P, Haladjian J, Bourdillon O (1990) Immobilization of glucose oxidase on carbon electrodes. J Electroanal Chem 293:151–163

    Article  CAS  Google Scholar 

  76. Schuhmann W, Lammert R, Uhe B, Schmidt H-L (1990) Polypyrrole, a new possibility for covalent binding of oxidoreductases to electrode surfaces as a base for stable biosensors. Sens Actuat B1:537–541

    Article  Google Scholar 

  77. Schuhmann W, Wohlsohläger H, Lammert R, Schmidt H-L, Löffler U, Wiemhöfer H-D, Gopel W (1990) Leaching of dimethylferrocene, a redox mediator in amperometric enzyme electrodes. Sens Actuat B1:571–575

    Article  Google Scholar 

  78. Bernard G, Simonet J (1980) Mixed electrochemical reduction of graphite and organic electrophiles. A possible method of building modified carbon electrodes? J Electroanal Chem 112(1):117–125

  79. Lin AWC, Yeh P, Yacynych AM, Kuwana T (1977) Cyanuric chloride as a general linking agent for the attachment of redox groups to pyrolytic graphite and metal oxide electrodes. J Electroanal Chem 84(2):411–419

    Article  CAS  Google Scholar 

  80. Evans JF, Kuwana T, Henne MT, Royer GP (1977) Electrocatalysis of solution species using modified electrodes. J Electroanal Chem 80(2):409–416

    Article  CAS  Google Scholar 

  81. Evans JF, Kuwana T (1979) Introduction of functional groups onto carbon electrodes via treatment with radio-frequency plasmas. Anal Chem 51(3):358–365

    Article  CAS  Google Scholar 

  82. Ianniello RM, Wieck HJ, Yacynych AM (1983) Characterization of chemically modified carbonaceous electrode materials by diffuse reflectance Fourier Transform Infrared Spectrometry. Anal Chem 55(13):2067–2070

    Article  CAS  Google Scholar 

  83. Janda P, Kavan L, Pseidlova M, Weber J (1983) A generator of non-equilibrium plasma for the modification of electrode surface. Chem Listy 77:200–206

    CAS  Google Scholar 

  84. Wieck HJ, Antrin RF, Yacynych AM, Greenhut VA (1982) Scanning electron microscopy of the surface morphology of graphitic electrode materials chemically modified by radiofrequency plasma and electrochemical treatments. Analyst 107:951–953

    Article  ADS  CAS  Google Scholar 

  85. Antrim RF, Yacynych AM, Wieck HJ, Lutter GW (1988) Characterisation of highly ordered pyrolytic graphite with covalently attached ferritin by electron probe microanalysis. Analyst 113:341–344

    Article  ADS  CAS  Google Scholar 

  86. Siperko LM (1990) Scanning tunneling microscopy and Raman spectroscopy of pyrolytic graphite electrodes. J Electrochem Soc 137(9):2791–2794

    Article  CAS  Google Scholar 

  87. Wieck HJ, Antrim RF, Yacynych AM, Greenhut VA (1985) Characterization of chemically modified carbonaceous electrode materials by X-ray fluorescence and scanning electrode microscopy. Anal Chim Acta 167:353–360

    Article  CAS  Google Scholar 

  88. Heider GH, Gelbert MB, Yacynych AM (1982) Acrylic acid polymer film chemically modified graphite electrodes. Anal Chem 54(2):322–324

    Article  CAS  Google Scholar 

  89. Elliott CM, Murray RW (1976) Chemically modified carbon electrodes. Anal Chem 48(8):1247–1254

    Article  CAS  Google Scholar 

  90. Schreurs JP, Barendreoht E (1983) Int Soc Electrohem 34th Meet Extend Abstr, Erlangen, abstr. No 0311

  91. Yang Y, Lin M, Cao S, Lin Z (1989) Proc 3rd Beijing Conf and Exhib on Instrum Analysis, Beijing, China, pp. F141–F142

  92. Mazur S, Matusinovic T, Cammann K (1977) Organic reactions of oxide-free carbon surfaces, an electroactive derivative. J Amer Chem Soc 99(11):3888–3890

    Article  CAS  Google Scholar 

  93. Oyama N, Anson FC (1978) Attachment of the EDTA complex of Ruthenium(III) to the surface of graphite electrodes. Electrochemistry and ligand substitution chemistry with the attached complex. J Electroanal Chem 88(2):289–297

  94. Oyama N, Brown AP, Anson FC (1978) Introduction of amine functional groups on graphite electrode surfaces and their use in the attachment of Ruthenium(II) to the electrode surface. J Electroanal Chem 87(3):435–441

    Article  CAS  Google Scholar 

  95. Nowak R, Schultz FA, Umaña M, Abruña H, Murray RW (1978) Chemically modified electrodes: Part XIV. Attachment of reagents to oxide-free glassy carbon surfaces. Electroactive RF polymer films on carbon and platinum electrodes. J Electroanal Chem 94(3):219–225

  96. Shu FR, Wilson GS (1976) Rotating ring-disk enzyme electrode for surface catalysis studies. Anal Chem 48(12):1679–1686

    Article  CAS  PubMed  Google Scholar 

  97. Yao T, Musha S (1979) Electrochemical enzymatic determination of ethanol and L-lactic acid with a carbon paste electrode modified chemically with nicotinamide adenine dinucleotide. Anal Chim Acta 110(2):203–209

    Article  CAS  Google Scholar 

  98. Patel AN, Collignon MG, O’Connell MA, Hung WOY, McKelvey K, Macpherson JV, Unwin PR (2012) A new view of electrochemistry at highly oriented pyrolytic graphite. J Am Chem Soc 134(49):20117–20130

    Article  CAS  PubMed  Google Scholar 

  99. Zhang G, Cuharuc AS, Güella AG, Unwin PR (2015) Electrochemistry at highly oriented pyrolytic graphite (HOPG): lower limit for the kinetics of outer-sphere redox processes and general implications for electron transfer models. Phys Chem Chem Phys 17(17):11827–11838

    Article  CAS  PubMed  Google Scholar 

  100. Gross AJ, Holzinger M, Cosnier S (2018) Buckypaper bioelectrodes: emerging materials for implantable and wearable biofuel cells. Energy Environ Sci 11(7):1670–1687

    Article  CAS  Google Scholar 

  101. Papa H, Gaillard M, Gonzalez L, Chatterjee J (2014) Fabrication of functionalized carbon nanotube buckypaper electrodes for application in glucose biosensors. Biosensors (MDPI) 4(4):449–460

    Article  Google Scholar 

  102. Tan RKL, Reeves SP, Hashemi N, Thomas DG, Kavak E, Montazami R, Hashemi NN (2017) Graphene as a flexible electrode: review of fabrication approaches. J Mater Chem A 5(34):17777–17803

    Article  CAS  Google Scholar 

  103. Koushanpour A, Guz N, Gamella M, Katz E (2016) Graphene-functionalized 3D-carbon fiber electrodes—preparation and electrochemical characterization. Electroanalysis 28(9):1943–1946

    Article  CAS  Google Scholar 

  104. Gorton L, Johansson G (1980) Cyclic voltammetry of FAD adsorbed on graphite, glassy carbon, platinum and gold electrodes. J Electroanal Chem 113(1):151–158

    Article  CAS  Google Scholar 

  105. Brown AP, Koval C, Anson FC (1976) Illustrative electrochemical behavior of reactants irreversibly adsorbed on graphite electrode surfaces. J Electroanal Chem 72(3):379–387

    Article  CAS  Google Scholar 

  106. Ye J, Baldwin RP (1988) Catalytic reduction of myoglobin and hemoglobin at chemically modified electrodes containing methylene blue. Anal Chem 60(20):2263–2268

    Article  CAS  PubMed  Google Scholar 

  107. Gorton L, Torstensson A, Jaegfeldt H, Johansson G (1984) Electrocatalytic oxidation of reduced nicotinamide coenzymes by graphite electrodes modified with an adsorbed phenoxazinium salt. Meldola Blue J Electroanal Chem 161(1):103–120

    Article  CAS  Google Scholar 

  108. Persson B, Gorton L (1990) A comparative study of some 3,7-diaminophenoxazine derivatives and related compounds for electrocatalytic oxidation of NADH. J Electroanal Chem 292:115–138

    Article  CAS  Google Scholar 

  109. Persson B (1990) A chemically modified graphite electrode for electrocatalytic oxidation of reduced nicotinamide adenine diuucleotide based on a phenothiazine derivative, 3-β-naphthoyl-toluidine blue 0. J Electroanal Chem 287:61–80

    Article  CAS  Google Scholar 

  110. Torstensson A, Gorton L (1981) Catalytic oxidation of NADH by surface-modified graphite electrodes. J Electroanal Chem 130:199–207

    Article  CAS  Google Scholar 

  111. Tarasevich MR, Suslov SN, Bogdanovskaya VA (1984) Oxidation-reduction reactions of quinones in the adsorbed states. Elektrokhimiya (USSR) 20(9):1202–1210 (in Russian)

    CAS  Google Scholar 

  112. Brown AP, Anson FC (1977) Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface. Anal Chem 49(11):1589–1595

    Article  CAS  Google Scholar 

  113. Brown AP, Anson FC (1978) Electron transfer kinetics with both reactant and product attached to the electrode surface. J Electroanal Chem 92(2):133–145

    Article  CAS  Google Scholar 

  114. Kano K, Konse T, Kubota T (1985) The curve fitting analysis of D.c. and A.c. voltammograms of a two-step surface-redox reaction. The application to the surface-redox system of adriamycin adsorbed on a pyrolytic graphite electrode. Bull Chem Soc Jap 58(7):1879–1885

  115. Konse T, Kano K, Kano R, Kubota T (1986) Electrochemical properties of adriamycin adsorbed on pyrolytic graphite electrodes modified by phospholipid monomolecular membranes. Bull Chem Soc Jap 59(10):3299–3301

    Article  CAS  Google Scholar 

  116. Ni F, Feng H, Gorton L, Cotton TM (1990) Electrochemical and SERS studies of chemically modified electrodes: Nile Blue A, a mediator for NADH Oxidation. Langmuir 6(1):66–73

    Article  CAS  Google Scholar 

  117. Jaegfeldt H, Torstensson A, Gorton L, Jöhansson G (1981) Catalytic oxidation of reduced nicotinamide adenine dinucleotide by graphite electrodes modified with adsorbed aromatics containing catechol functionalities. Anal Chem 53(13):1979–1982

    Article  CAS  Google Scholar 

  118. Jönsson G, Gorton L, Pettersson L (1989) Mediated electron transfer from glucose oxidase at a ferrocene-modified graphite electrode. Electroanalysis 1(1):49–55

    Article  Google Scholar 

  119. Brown AP, Anson FC (1977) Molecular anchors for the attachment of metal complexes to graphite electrode surfaces. J Electroanal Chem 83(1):203–206

    CAS  Google Scholar 

  120. Pool K, Buck RP (1979) Voltammetry and photocurrents at ruthenium-complex modified carbon electrodes. J Electroanal Chem 95(2):241–246

    Article  CAS  Google Scholar 

  121. Cao M, Fu A, Wang Z, Liu J, Kong N, Zong X, Liu H, Gooding JJ (2014) Electrochemical and theoretical study of π–π stacking interactions between graphitic surfaces and pyrene derivatives. J Phys Chem C 118(5):2650–2659

    Article  CAS  Google Scholar 

  122. Holzinger M, Cosnier S, Buzzetti PHM (2023) The versatility of pyrene and its derivatives on sp2 carbon nanomaterials for bioelectrochemical applications. Synth Met 292:117219

    Article  CAS  Google Scholar 

  123. Bourourou M, Elouarzaki K, Holzinger M, Agnès C, Le Goff A, Reverdy-Bruas N, Chaussy D, Party M, Maaref A, Cosnier S (2014) Freestanding redox buckypaper electrodes from multi-wall carbon nanotubes for bioelectrocatalytic oxygen reduction via mediated electron transfer. Chem Sci 5:2885–2888

    Article  CAS  Google Scholar 

  124. Halámková L, Halámek J, Bocharova V, Szczupak A, Alfonta L, Katz E (2012) Implanted biofuel cell operating in living snail. J Am Chem Soc 134(11):5040–5043

    Article  PubMed  Google Scholar 

  125. MacVittie K, Halámek J, Halámková L, Southcott M, Jemison WD, Lobel R, Katz E (2013) From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells. Energy Environ Sci 6:81–86

    Article  CAS  Google Scholar 

  126. Castorena-Gonzalez JA, Foote C, MacVittie K, Halámek J, Halámková L, Martinez-Lemus LA, Katz E (2013) Biofuel cell operating in vivo in rat. Electroanalysis 25(7):1579–1584

    Article  CAS  Google Scholar 

  127. Koushanpour A, Guz N, Gamella M, Katz E (2016) Biofuel cell based on carbon fiber electrodes functionalized with graphene nanosheets. ECS J Solid State Sci Technol 5:M3037–M3040

    Article  CAS  Google Scholar 

  128. Liu J, Kong N, Li A, Luo X, Cui L, Wang R, Feng S (2013) Graphene bridged enzyme electrodes for glucose biosensing application. Analyst 138:2567–2575

    Article  ADS  CAS  PubMed  Google Scholar 

  129. Tarasevich MR, Volpin ME, Bogdanovskaya VA, Orlov SB, Novodarova GN, Kolosova EM (1981) Electrocatalytic properties of organic complexes of transition metals—models of oxidases. Activation of cathodic reaction of molecular oxigen with organic complexes of Co and Cu in a neutral media. Elektrokhimiya (USSR). 17(9):1327–1334 (in Russian)

  130. Bianco P, Haladjian J, Manjaoui A, Bruschi M (1988) Electrochemical study of flavin mononucleotide and flavodoxin from Desulfovibrio Vulgaris Hildenborough. Electrochim Acta 33(6):745–752

    Article  CAS  Google Scholar 

  131. Moiroux J, Elving PJ (1979) Adsorption phenomena in the NAD+/NADH system at glassy carbon electrodes. J Electroanal Chem 102(1):93–108

    Article  CAS  Google Scholar 

  132. Gorton L, Johansson G, Torstensson A (1985) A kinetic study of the reaction between dihydronicotinamide adenine dinucleotide (NADH) and an electrode modified by adsorption of 1,2-benzophenoxazine-7-one. J Electroanal Chem 196(1):81–92

    Article  CAS  Google Scholar 

  133. Güven G, Şahin S, Güven A, Yu EH (2016) Power harvesting from human serum in buckypaper-based enzymatic biofuel cell. Front Energy Res 4:4

    Article  Google Scholar 

  134. Slaughter G, Kulkarni T (2017) Highly selective and sensitive self-powered glucose sensor based on capacitor circuit. Sci Rep 7:1471

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  135. Persson B, Gorton L, Johansson G, Torstensson A (1985) Biofuel anode based on D-glucose dehydrogenase, nicotinamide adenine dinucleotide and a modified electrode. Enzyme Microb Technol 7:549–552

    Article  CAS  Google Scholar 

  136. Persson B, Gorton L, Johansson G (1986) 949—biofuel anode for cell reactions involving nicotinamide adenine dinucleotide as a charge carrier. Bioelectrochem Bioenerg 16:479–483

    Article  CAS  Google Scholar 

  137. Appelqvist R, Marko-Varga G, Gorton L, Torstensson A, Johansson G (1985) Anal Chim Acta 169:237–247

    Article  CAS  Google Scholar 

  138. Gamella M, Guo Z, Alexandrov K, Katz E (2019) Bioelectrocatalytic electrodes modified with PQQ-glucose dehydrogenase–calmodulin chimera switchable by peptide signals: pathway to generic bioelectronic systems controlled by biomolecular inputs. ChemElectroChem 6:638–645

    Article  CAS  Google Scholar 

  139. Koushanpour A, Gamella M, Guo Z, Honarvarfard E, Poghossian A, Schöning MJ, Alexandrov K, Katz E (2017) Ca2+-switchable glucose dehydrogenase associated with electrochemical/electronic interfaces: Applications to signal-controlled power production and biomolecular release. J Phys Chem B 121:11465–11471

    Article  CAS  PubMed  Google Scholar 

  140. Piao Y, Han DJ, Seo TS (2014) Highly conductive graphite nanoparticle based enzyme biosensor for electrochemical glucose detection. Sens Actuat B 194:454–459

    Article  CAS  Google Scholar 

  141. Tsang DKH, Lieberthal TJ, Watts C, Dunlop IE, Ramadan S, del Rio Hernandez AE, Klein N (2019) Chemically functionalised graphene FET biosensor for the label-free sensing of exosomes. Sci Rep 9:13946

    Article  ADS  Google Scholar 

  142. Filipov Y, Bollella P, Katz E (2019) Not-XOR (NXOR) logic gate realized with enzyme-catalyzed reactions—optical and electrochemical signal transduction. ChemPhysChem 20:2082–2092

    Article  CAS  PubMed  Google Scholar 

  143. Katz E, Pingarrón JM, Mailloux S, Guz N, Gamella M, Melman G, Melman A (2015) Substance release triggered by biomolecular signals in bioelectronic systems. J Phys Chem Lett 6:1340–1347

    Article  CAS  PubMed  Google Scholar 

  144. Bollella P, Guo Z, Edwardraja S, Krishna Kadambar V, Alexandrov K, Melman A, Katz E (2021) Self-powered molecule release systems activated with chemical signals processed through reconfigurable Implication or Inhibition Boolean logic gates. Bioelectrochemistry 138:107735

    Article  CAS  PubMed  Google Scholar 

  145. MacVittie K, Conlon T, Katz E (2015) A wireless transmission system powered by an enzyme biofuel cell implanted in an orange. Bioelectrochemistry 106:28–33

    Article  CAS  PubMed  Google Scholar 

  146. Katz E, MacVittie K (2013) Implanted biofuel cells operating in vivo—methods, applications and perspectives. Energy Environ Sci 6:2791–2803

    Article  CAS  Google Scholar 

  147. Ayyavoo K, Velusamy P (2021) Pyrene based materials as fluorescent probes in chemical and biological fields. New J Chem 45:10997–11017

    Article  CAS  Google Scholar 

  148. Katz E (1993) Application of bifunctional reagents for selective immobilization of amino and thiol compounds on a carbon electrode surface. J Electroanal Chem 361:109–114

    Article  CAS  Google Scholar 

  149. Katz E (1994) Application of bifunctional reagents for immobilization of proteins on a carbon electrode surface: Oriented immobilization of photosynthetic reaction centers. J Electroanal Chem 365:157–164

    Article  CAS  Google Scholar 

  150. Soriaga MP, Wilson PH, Hubbard AT, Benton CS (1982) Orientational transitions of aromatic molecules adsorbed on platinum electrodes. J Electroanal Chem 142:317–336

    Article  CAS  Google Scholar 

  151. Batina N, Frank DG, Gui JY, Kahn BE, Lin O-H, Lu F, McCargar JW, Salaita GN, Stern DA, Zapien DO, Hubbard AT (1989) Oriented adsorption at well-defined electrode surfaces studied by Auger, LEED, and EELS spectroscopy. Electrochim Acta 34(8):1031–1044

    Article  Google Scholar 

  152. Soriaga MP, Hubbard AT (1982) Determination of the orientation of adsorbed molecules at solid-liquid interfaces by thin-layer electrochemistry: aromatic compounds at platinum electrodes. J Amer Chem Soc 104(10):2735–2742

    Article  CAS  Google Scholar 

  153. Soriaga MP, Binamira-Soriaga E, Hubbard AT, Benziger JB, Pang K-WP (1985) Surface coordination chemistry of platinum studied by thin-layer Electrodes. Adsorption, orientation, and mode of binding of aromatic and quinonoid compounds. Inorg Chem 24(1):65–73

  154. Soriaga MP, White JH, Song D, Chia VKF, Arrhenius PO, Hubbard AT (1985) Surface coordination chemistry of platinum studied by thin-layer electrodes. Surface chemical reactivity of aromatic and quinonoid compounds adsorbed in specific orientational states. Inorg Chem 24(1):73–79

  155. Stern DA, Wellner E, Salaita GN, Laguren-Davidson L, Lu F, Batina N, Frank DG, Zapien DO, Walton N, Hubbard AT (1988) Adsorbed thiophenol and related compounds studied at Pt(111) electrodes by EELS, Auger spectroscopy, and cyclic voltammetry. J Amer Chem Soc 110(15):4885–4893

    Article  CAS  Google Scholar 

  156. Gui JY, Lu F, Stern DA, Hubbard AT (1990) Surface chemistry of mercaptopyridines at Ag(111) electrodes studied by EELS, LEED, Auger spectroscopy and electrochemistry. J Electroanal Chem 292:245–262

    Article  CAS  Google Scholar 

  157. Gui JY, Stern DA, Frank DG, Lu F, Zapien DC, Hubbard AT (1991) Adsorption and surface structural chemistry of thiophenol, benzyl mercaptan, and alkyl mercaptans. Comparative studies at Ag(111) and Pt(111) Electrodes by means of Auger spectroscopy, electron energy loss spectroscopy, low-energy electron diffraction, and electrochemistry. Langmuir 7(5):955–963

  158. Kahn BE, Chaffins SA, Gui JY, Lu F, Stern DA, Hubbard AT (1990) Surface vibrational spectroscopy. A comparison of the EELS spectra of organic adsorbates at Pt(111) with IR and Raman spectra of the unadsorbed organics. Chem Phys 141:21–39

    Article  CAS  Google Scholar 

  159. Vieira KL, Zapien DO, Soriaga MP, Hubbard AT, Low KP, Anderson SE (1986) Analysis of products from reactions of chemisorbed monolayers at smooth platinum electrodes: Electrochemical hydrodesulfurization of thiophenol derivatives. Anal Chem 58(14):2964–2968

    Article  CAS  Google Scholar 

  160. Bravo BG, Michelhaugh SL, Mebrahtu T, Soriaga MP (1988) Chemisorption and electrocatalytic reactivity of 3,6-dihydroxypyridazine at Au and Pt electrodes: a comparison. Electrochim Acta 33(11):1507–1511

    Article  CAS  Google Scholar 

  161. Soriaga MP, Hubbard AT (1984) Formation of vertically oriented aromatic molecules chemisorbed on platinum electrodes: the effect of surface pretreatment with flat oriented intermediates. J Phys Chem 88(6):1089–1094

    Article  CAS  Google Scholar 

  162. Soriaga MP, Hubbard AT (1984) Influence of temperature on the electrocatalytic oxidation of aromatic compounds adsorbed on platinum. J Phys Chem 88(9):1758–1761

    Article  CAS  Google Scholar 

  163. Soriaga MP, Hubbard AT (1982) Determination of the orientation of aromatic molecules adsorbed on platinum electrodes: the influence of iodide, a surface-active anion. J Amer Chem Soc 104(10):2742–2747

    Article  CAS  Google Scholar 

  164. Soriaga MP, Hubbard AT (1982) Determination of the orientation of aromatic molecules adsorbed on platinum electrodes. The effect of solute concentration. J Amer Chem Soc 104(14):3937–3945

  165. Soriaga MP, Chia VK, White JH, Song D, Hubbard AT (1984) The orientation and electrochemical oxidation of hydroquinone chemisorbed on platinum electrodes in various weakly surface-active supporting electrolytes. J Electroanal Chem 162:143–152

    CAS  Google Scholar 

  166. Hubbard AT (1990) Surface electrochemistry. Langmuir 6(1):97–105

    Article  CAS  Google Scholar 

  167. White JH, Soriaga MP, Hubbard AT (1985) Reaction mechanism of the benzoquinone/hydroquinone couple at platinum electrodes in aqueous solutions. Retardation and enhancement of electrode kinetics by single chemisorption layers. J Electroanal Chem 185:331–338

    Article  CAS  Google Scholar 

  168. Chia VK, Soriaga MP, Hubbard AT (1987) Kinetics of oriented adsorption: hydroquinone on platinum. J Phys Chem 91(1):78–82

    Article  CAS  Google Scholar 

  169. Soriaga MP, Stickney JL, Hubbard AT (1983) Electrochemical oxidation of aromatic compounds adsorbed on platinum electrodes. The influence of molecular orientation. J Electroanal Chem 144:207–215

    Article  CAS  Google Scholar 

  170. Dong S, Zhu Y, Song S (1989) Electrode processes of hemoglobin covered by Brilliant Cresyl Blue. Bioelectrochem Bioenerg 21:233–243

    Article  CAS  Google Scholar 

  171. Zhu Y, Dong S (1990) Rapid redox reaction of hemoglobin at methylene Green modified platinum electrode. Electrochim Acta 35(7):1139–1143

    Article  CAS  Google Scholar 

  172. Horanyi G, Rizmayer EM (1988) Induced adsorption of cations by -SO3H and -COOH groups anchored to the surface of a platinized platinum electrode. A radiotracer study. Electrochim Acta 33(8):1161–1165

    Article  CAS  Google Scholar 

  173. Tarasevich MR, Radyushkina KA (1982) Catalysis and electrocatalysis with metalloporphyrins. Moscow, Nauka (in Russian: Tapaceвич MP, Paдюшкинa КA (1982) Кaтaлиз и элeктpoкaтaлиз мeтaллoпopфиpинaми. M.: Hayкa)

  174. Zagal J, Sen RK, Yeager E (1977) Oxygen reduction by Co(II) tetrasulfonatephthalo-cyanine irreversibly adsorbed on a stress-annealed pyrolytic graphite electrode surface. J Electroanal Chem 83(1):207–213

    CAS  Google Scholar 

  175. Zagal JH (1980) Electrocatalysis of hydrazine electrooxidation by phthalocyamines adsorbed on graphite. J Electroanal Chem 109(1/3):389–393

    Article  CAS  Google Scholar 

  176. Collman JP, Marrocco M, Denisevich P, Koval O, Anson FC (1979) Potent catalysis of the electroreduction of oxygen to water by dicobalt porphyrin dimers adsorbed on graphite electrodes. J Electroanal Chem 101(1):117–122

    Article  CAS  Google Scholar 

  177. Collman JP, Denisevich P, Konai Y, Marrocco M, Koval O, Anson FC (1980) Electrode catalysis of the four-electron reduction of oxygen to water by dicobalt face-to-face porphyrins. J Amer Chem Soc 102(19):6027–6036

    Article  CAS  Google Scholar 

  178. Pflug JS, Faulkner LR (1980) Simultaneous electrochemical and fluorometric monitoring of zinc tetraphenylporphyrin deposited on indium oxide and pyrolytic graphite electrodes. J Amer Chem Soc 102(19):6143–6144

    Article  CAS  Google Scholar 

  179. Durand RR Jr, Anson FC (1982) Catalysis of dioxygen reduction at graphite electrodes by an adsorbed cobaly(II) porphyrin. J Electroanal Chem 134(2):273–289

    Article  CAS  Google Scholar 

  180. Lieber CM, Lewis NS (1984) Catalytic reduction of CO2 at carbon electrodes modified with cobalt phthalocyanine. J Amer Chem Soc 106(17):5033–5034

    Article  CAS  Google Scholar 

  181. Bettelheim A, Chan RJH, Kuwana T (1979) Electrocatalysis of oxygen reduction. Part II. Adsorbed cobalt(III) tetrapyridylporphyrin on glassy carbon electrode. J Electroanal Chem 99(3):391–397

  182. Umezawa Y, Yamamura T (1979) Derivatization of platinum electrodes by photoactive surface active porphyrins. J Electroanal Chem 95(1):113–116

    Article  CAS  Google Scholar 

  183. Nikolic BŽ, Adzic RR, Yeager EB (1979) Reflectance spectra of monolayers of tetrasulfonated transition metal phthalocyanines adsorbed on electrode surfaces. J Electroanal Chem 103(2):281–287

    Article  CAS  Google Scholar 

  184. Kötz R, Yeager E (1980) Raman spectroscopy of cobalt phthalocyanine adsorbed on a silver electrode. J Electroanal Chem 113(1):113–125

    Article  Google Scholar 

  185. Lafi LF, Khanova LA, Tarasevich MR (1990) Effect of the surface charge on adsorption of chlorophyll at an amalgamated platinum electrode. Elektrokhimiya (USSR) 26(12):1675–1677 (in Russian)

    CAS  Google Scholar 

  186. Davis DG, Murray RW (1977) Surface electrochemistry of iron porphyrins and iron on tin oxide Electrodes. Anal Chem 49(2):194–198

    Article  CAS  PubMed  Google Scholar 

  187. Kiselev BA, Kozlov YN (1980) Photoelectrochemistry of chlorophyll monolayers Bioelectrochem Bioenerg 7:247–254

    Article  CAS  Google Scholar 

  188. Zagal JH, Fierro C, Rozas R (1981) Electrocatalytic effects of adsorbed cobalt phthalocyanine tetrasulfonate in the anodic oxidation of cysteine. J Electroanal Chem 119(2):403–408

    Article  CAS  Google Scholar 

  189. Kobayashi N, Matsue T, Fujihira M, Osa T (1979) Catalytic electroreduction of molecular oxygen using iron- and cobalt-tetra-o-aminophenylporphyrins in acidic media. J Electroanal Chem 103(3):427–431

    Article  CAS  Google Scholar 

  190. Vatanabe T, Fujishima A, Honda K (1983) Photoelectrolysis of water and sensitization of semiconductors. In: Gratzel M (ed) Energy Resources through Photochemistry and Catalysis. Acad. Press, New York, pp 359–385

    Chapter  Google Scholar 

  191. Suponeva EP, Kazakova AA, Kiselev BA (1989) Electrochemical oxidation of chlorophyll “a” in thin films at Pt and SnO2 electrodes. Bioelectrochem Bioenerg 22:75–81

    Article  CAS  Google Scholar 

  192. Gregg BA, Fox MA, Bard AJ (1989) Surfactant porphyrins linked to ruthenium oxide microcolloids: a microheterogeneous photoreactor. Tetrahedron 45(15):4707–4716

    Article  CAS  Google Scholar 

  193. Katz E, Borovkov VV, Evstigneeva RP (1992) Application of quinone thio derivatives as a basis for assembling complex molecular systems at an electrode surface. J Electroanal Chem 326:197–212

    Article  Google Scholar 

  194. Laviron E, Roullier L, Degrand C (1980) A multilayer model for the study of space distributed redox modified electrodes: Part II. Theory and application of linear potential sweep voltammetry for a simple reaction. J Electroanal Chem 112(1):11–23

  195. Gileadi E (ed) (1967) Electrosorption. Plenum Press, New York

  196. Lane RF, Hubbard AT (1973) Electrochemistry of chemisorbed molecules. I. Reactants connected to electrodes through olefinic substituents. J Phys Chem 77(11):1401–1410

  197. Lane RF, Hubbard AT (1973) Electrochemistry of chemisorbed molecules. II. The influence of charged chemisorbed molecules on the electrode reactions of platinum complexes. J Phys Chem 77(11):1411–1421

  198. Sharp M, Petersson M, Edstrom K (1979) Preliminary determinations of electron transfer kinetics involving ferrocene covalently attached to a platinum surface. J Electroanal Chem 95(1):123–130

    Article  CAS  Google Scholar 

  199. Hupp JT, Weaver MJ (1984) Utility of surface reaction entropies for examining reactant-solvent interactions at electrochemical interfaces. Ferricinium-ferrocene attached to platinum electrodes. J Electrochem Soc 131(3):619–622

  200. Price JF, Baldwin RP (1980) Preconcentration and determination of ferrocenecarboxaldehyde at a chemically modified platinum electrode. Anal Chem 52(12):1940–1944

    Article  CAS  Google Scholar 

  201. Umaña M, Rolison DR, Nowak R, Daum P, Murray RW (1980) X-ray photoelectron spectroscopy of metal, metal oxide, and carbon electrode surfaces chemically modified with ferrocene and ferricenium. Surface Sci 101:295–309

    Article  ADS  Google Scholar 

  202. Stickney JL, Soriaga MP, Hubbard AT, Anderson SE (1981) A survey of factors influencing the stability of organic functional groups attached to platinum electrodes. J Electroanal Chem 125:73–88

    Article  CAS  Google Scholar 

  203. Ueda C, Tse C-S, Kuwana T (1982) Stability of catechol modified carbon electrodes for eIectrocataIysis of dihydronicotinamide adenine dinucIeotide and ascorbic acid. Anal Chem 54(6):850–856

    Article  CAS  Google Scholar 

  204. Arkles B (1977) Tailoring surfaces with silanes. Chemtech 7(12):66–778

  205. Willner I, Katz E (2000) Integration of layered redox-proteins and conductive supports for bioelectronic applications. Angew Chem Int Ed 39:1180–1218

    Article  CAS  Google Scholar 

  206. Armstrong FA, Brown KJ (1987) J Electroanal Chem 219:319–325

    Article  CAS  Google Scholar 

  207. Duvault Y, Gagnaire A, Gardies F, Jaffrezic-Renault N, Martelet O, Morel D, Serpinet J, Duvault J-L (1990) Physical characterization of covalently bonded alkyl monolayers on silica surfaces. Thin Solid Films 185:169–179

    Article  ADS  CAS  Google Scholar 

  208. Moses PR, Wier LM, Murray RW (1975) Chemically modified tin oxide electrode. Anal Chem 47(12):1882–1886

    Article  CAS  Google Scholar 

  209. Goldstein CS, Weiss KD, Drago RS (1987) Organic residues introduced during metal oxide functionalization. J Amer Chem Soc 109(3):758–761

    Article  CAS  Google Scholar 

  210. Allred AL, Bradley C, Newman TH (1978) Attachment of permethylpolysilane groups to platinum by electroreduction of chloropermethylpolysilanes. X-Ray photoelectron spectroscopy of permethylpolysilanes chemically bound to electrode surfaces. J Amer Chem Soc 100(16):5081–5084

  211. Untereker DF, Lennox JC, Wier LM, Moses PR, Murray RW (1977) Chemically modified electrodes. Part IV. Evidence for formation of monolayers of bonded organosilane reagents. J Electroanal Chem 81(2):309–318

  212. Fujihira M, Matsue T, Osa T (1976) Organo-modified metal oxide electrode. I. Studies of modified layers by capacitance measurements and ESCA. Chem Lett 875–880

  213. Finklea HO, Abruña H, Murray RW (1980) Titanium dioxide and platinum/platinum oxide chemically modified electrodes with Tailormade surface states. In: Interfacial Phtoprocesses: Energy Conversion and Synthesis, Wrighton M (Ed), Adv Chem Ser ACS, Washington, DC, 184:253–268

  214. Srinivasan VS, Lamb WJ (1977) Sheet resistivity measurements of chemically modified electrodes by four-point probe method. Anal Chem 49(11):1639–1640

    Article  CAS  Google Scholar 

  215. Diaz AF, Hetzler U, Kay E (1977) Inelastic electron tunneling spectroscopy of a chemically modified surface. J Amer Chem Soc 99(20):6780–6781

    Article  CAS  Google Scholar 

  216. Diaz AF, Kanazawa KK (1979) Electrodes with covalently attached monolayers. IBM J Res Develop 23(3):316–329

    Article  CAS  Google Scholar 

  217. Fox MA, Nobs FJ, Voynick TA (1980) Covalent attachment of arenes to SnO2-semiconductor electrodes. J Amer Chem Soc 102(12):4029–4035

    Article  CAS  Google Scholar 

  218. Fox MA, Hohman JR, Kamat PV (1983) Chemically-modified electrodes in photoelectrochemical cells. Can J Chem 61:888–893

    Article  CAS  Google Scholar 

  219. Calabrese GS, Buchanan RM, Wrighton MS (1982) Electrochemical behavior of a surface-confined naphthoquinone derivative. Electrochemical and photoelectrochemical reduction of oxygen to hydrogen peroxide at derivatized electrodes. J Amer Chem Soc 104(21):5786–5788

  220. Calabrese GS, Buchanan RM, Wrighton MS (1983) Mediated electrochemical reduction of oxygen to hydrogen peroxide via a surface-confined naphthoquinone reagent and the mediated electrochemical reduction of a naphthoquinone redox reagent anchored to high surface area oxides. J Amer Chem Soc 105(17):5594–5600

    Article  CAS  Google Scholar 

  221. Willman KW, Rocklin RD, Nowak R, Kuo K-N, Schultz FA, Murray RW (1980) Electronic and photoelectron spectral studies of electroactive species attached to silanized C and Pt electrodes. J Amer Chem Soc 102(26):7629–7634

    Article  CAS  Google Scholar 

  222. Kuo K-N, Murray RW (1982) Electrocatalysis with ferrocyanide electrostatically trapped in an alkylaminesiloxane polymer film on a Pt electrode. J Electroanal Chem 131:37–60

    Article  CAS  Google Scholar 

  223. Haller I (1978) Covalently attached organic monolayers on semiconductor surfaces. J Amer Chem Soc 100(26):8050–8055

    Article  ADS  CAS  Google Scholar 

  224. Katz EY, Shkuropatov AY, Sviridov BD, Shuvalov VA, Vagabova OI (1986) Quinone-modified electrodes. Zhurn Fizich Khim (USSR) 60(5):1312–1314 (in Russian)

    Google Scholar 

  225. Bataillard P, Clechet P, Jaffrezic-Renault N, Martelet C, Morel D, Serpinet J (1986) Silanization of Si/SiO2 structures for detection of silver ions. J Electrochem Soc 133(8):1759–1760

    Article  CAS  Google Scholar 

  226. Bataillard P, Clechet P, Jaffrezic-Renault N, Kong XG, Martelet C (1987) The preparation of CHEMFET selective gates by thin silica layer grafting and their behaviour. Sens Actuat 12:245–254

    Article  CAS  Google Scholar 

  227. Bataillard P, Gardies F, Jaffrezic-Renault N, Martelet C, Colin B, Mandrand B (1988) Direct detection of immunospecies by capacitance measurements. Anal Chem 60(21):2374–2379

    Article  CAS  PubMed  Google Scholar 

  228. Locascio-Brown L, Plant AL, Durst RA, Brizgys MV (1990) Radiometric and fluorimetric determination of aminosilanes and protein covalently bound to thermally pretreated glass substrates. Anal Chim Acta 228:107–116

    Article  CAS  Google Scholar 

  229. Bookbinder DO, Bruce JA, Dominey RN, Lewis NS, Wrighton MS (1980) Synthesis and characterization of a photosensitive interface for hydrogen generation: chemically modified p-type semiconducting silicon photocathodes. Proc Natl Acad Sci USA 77(11):6280–6284

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  230. Bookbinder DC, Wrighton MS (1980) Thermodynamically uphill reduction of a surface-confined N, N’-dialkyl-4,4’-bipyridinium derivative on illuminated p-type silicon surfaces. J Amer Chem Soc 102(15):5123–5125

    Article  CAS  Google Scholar 

  231. Bookbinder DC, Lewis NS, Wrighton MS (1981) Heterogeneous one-electron reduction of metal-containing biological molecules using molecular hydrogen as the reductant: synthesis and use of a surface-confined viologen redox mediator that equilibrates with hydrogen. J Amer Chem Soc 103(25):7656–7659

    Article  CAS  Google Scholar 

  232. Dominey RN, Lewis NS, Bruce JA, Bookbinder DC, Wrighton MS (1982) Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes. J Amer Chem Soc 104(2):467–482

    Article  CAS  Google Scholar 

  233. Lewis NS, Wrighton MS (1984) Effect of charge transport in electrode-confined N, N-Dialkyl-4,4’-bipyridinium polymers on the current-potential response for mediated, outer-sphere electron-transfer reactions. J Phys Chem 88(10):2009–2017

    Article  CAS  Google Scholar 

  234. Gaudiello JG, Ghosh PK, Bard AJ (1985) Polymer films on electrodes: 17. The application of simultaneous electrochemical and electron spin resonance techniques for the study of two viologen-based chemically modified electrodes. J Amer Chem Soc 107(11):3027–3032

  235. Chao S, Simon RA, Mallouk TE, Wrighton MS (1988) Multicomponent redox catalysts for reduction of large biological molecules using molecular hydrogen as the reductant. J Amer Chem Soc 110(7):2270–2276

    Article  CAS  Google Scholar 

  236. Wrighton MS, Palazzotto MO, Bocarsly AB, Bolts JM, Fischer AB, Nadjo L (1978) Preparation of chemically derivatized platinum and gold electrode surfaces. Synthesis, characterization, and surface attachment of trichlorosilylferrocene, (1,1’-ferrocenediyl)dichlorosilane, and 1,1’-bis(triethoxysilyl)ferrocene. J Amer Chem Soc 100(23):7264–7271

  237. Putvinski TM, Schilling ML, Katz HE, Chidsey CED, Mujsce AM, Emerson AB (1990) Self-assembly of organic multilayers with polar order using zirconium phosphate bonding between layers. Langmuir 6(10):1567–1571

    Article  CAS  Google Scholar 

  238. White HS, Murray RW (1979) Fluorescence and X-ray photoelectron spectroscopy surface analysis of metal oxide electrodes chemically modified with dansylated aIkylaminesilanes. Anal Chem 51(2):236–239

    Article  CAS  Google Scholar 

  239. Finklea HO, Murray RW (1979) Chemically modified electrodes. 12. Effects of silanization on titanium dioxide electrodes. J Phys Chem 83(3):353–358

  240. Willman KW, Greer E, Murray RW (1979) Chemically modified electrodes by silanization reactions Nouv J Chim 3(7):455–461

    CAS  Google Scholar 

  241. Armstrong NR, Shepard VR Jr (1981) Differential-capacitance studies of silane-modified SnO2 electrodes at low modulation frequencies. J Phys Chem 85(20):2965–2970

    Article  CAS  Google Scholar 

  242. Tomkiewicz M (1980) Surface states on chemically modified TiO2 electrodes. Surface Sci 101:286–294

    Article  ADS  CAS  Google Scholar 

  243. Moses PR, Murray RW (1977) Chemically modified electrodes: Part V. Covalent binding of a reversible electrode reactant to RuO2 electrodes. J Electroanal Chem 77(3):393–399

  244. Lenhard JR, Murray RW (1978) Chemically modified electrodes. 13. Monolayer/multilayer coverage, decay kinetics, and solvent and interaction effects for ferrocenes covalently linked to platinum electrodes. J Amer Chem Soc 100(25):7870–7875

  245. Katz E, Solov’ev AA (1989) Chemically modified electrode with affinity to sulfhydryl compounds. J Electroanal Chem 261:217–222

    Article  CAS  Google Scholar 

  246. Theodoridou E, Besenhard JO, Fritz HP (1981) Chemically modified carbon fibre electrodes: Part II. Characterization of trimethylsilanized carbon fibres by reduction of adsorbed o-nitrophenol. J Electroanal Chem 124(1/2):87–94

  247. Perrot H, Jaffrezic-Renault N, De Rooij NF, Van Den Vlekkert HH (1989) Ionic detection using differential measurement between an ion-sensitive FET and a reference FET. Sens Actuat 20:293–299

    Article  CAS  Google Scholar 

  248. Clechet P, Jaffrezic-Renault N (1990) Silica surface sensitization and chemical sensors. Adv Mater 2(6/7):293–298

    Article  CAS  Google Scholar 

  249. Jaffrezic-Renault N, Perrot H, Nguyen van Huong C (1989) Study of ionic adsorption on EOS structures by combining electroreflectance, photocurrent and capacitance measurements. Electrochim Acta 34(12):1739–1743

    Article  CAS  Google Scholar 

  250. Cieslinski R, Armstrong NR (1984) Voltammetric, chronoamperometric and chronoabsorptometric studies of the nucleation of n-heptyl viologen films on SnO2, silane-modified SnO2 and ion-beam-treated ITO-metallized polymer films. J Electroanal Chem 161:59–73

    Article  CAS  Google Scholar 

  251. DePalma V, Tillman N (1989) Friction and wear of self-assembled trichlorosilane monolayer films on silicon. Langmuir 5(3):868–872

    Article  CAS  Google Scholar 

  252. Fujihira M, Muraki H, Aoyagui S (1985) An alkylsilanized gold electrode. A novel electrode for independent electrochemical detection of H2O2 and O2 in aqueous alkaline solutions. J Electroanal Chem 195:197–201

    Article  CAS  Google Scholar 

  253. Sabatani E, Rubinstein I (1987) Organized self-assembling monolayers on electrodes. 2. Monolayer-based ultramicroelectrodes for the study of very rapid electrode kinetics. J Phys Chem 91(27):6663–6669

  254. Cheng IF, Schimpf JM, Martin CR (1990) Ultramicroelectrode ensembles. Part V. Sealing defects between the ensemble host membrane with octadecyltrichlorosilane. J Electroanal Chem 284(2):499–505

  255. Fox MA, Nobs FJ, Voynick TA (1980) Chemically modified electrodes in dye-sensitized photogalvanic cells. J Amer Chem Soc 102(12):4036–4039

    Article  CAS  Google Scholar 

  256. Sabatani E, Rubinstein I, Maoz R, Sagiv (1987) Organized self-assembled monolayers on electrodes: Part I. Octadecyl derivatives on gold. J Electroanal Chem 219(1/2):365–371

  257. Tillman N, Ulman A, Schildkraut JS, Penner TL (1988) Incorporation of phenoxy groups in self-assembled monolayers of trichlorosilane derivatives: effects on film thickness, wettability, and molecular orientation. J Amer Chem Soc 110(18):6136–6144

    Article  CAS  Google Scholar 

  258. Perrot H, Jaffrezic-Renault N, Clechet P (1990) Analysis of the response of ion sensing FETs with a chemically modified gate insulator. J Electrochem Soc 137(2):598–602

    Article  CAS  Google Scholar 

  259. Hawn DD, Armstrong NR (1978) Electrochemical adsorption and covalent attachment of erythrosin to modified tin dioxide electrodes and measurement of the photocurrent sensitization to visible wavelength light. J Phys Chem 82(11):1288–1295

    Article  CAS  Google Scholar 

  260. Cheek GT, Nelson RF (1978) Applications of chemically modified electrodes to analysis of metal ions. Anal Lett A11(5):393–402

    Article  CAS  Google Scholar 

  261. Sudholter EJR, Van der Wal P, Skowronska-Ptasinska M, Van den Berg A, Bergveld P, Reinhoudt DN (1990) Modification of ISFETs by covalent anchoring of poly(hydroxyethyl methacrylate) hydrogel. Introduction of a thermodynamically defined semiconductor-sensing membrane interface. Anal Chim Acta 230:59–65

    Article  CAS  Google Scholar 

  262. Van der Wal P, Skowronska-Ptasinska M, Van der Berg A, Bergveld P, Sudholter EJR, Reinhoudt DN (1990) New membrane materials for potassium-selective ion-sensitive field-effect transistors. Anal Chim Acta 231:41–52

    Article  Google Scholar 

  263. Miwa T, Jin L-T, Mizuike A (1984) Differential-pulse anodic stripping voltammetry of copper with a chemically-modified glassy carbon electrode. Anal Chim Acta 160:135–140

    Article  CAS  Google Scholar 

  264. Fujihira M, Matsue T, Osa T (1977) SnO2 electrode modified by organic compounds. Study of the modified layer by capacitance method. Elektrokhirniya (USSR) 13:1679–1684 (in Russian)

    CAS  Google Scholar 

  265. Lenhard JR, Rocklin R, Abruña H, Willman K, Kuo K, Nowak R, Murray RW (1978) Chemically modified electrodes. II. Predictability of formal potentials of covalently immobilized charge-transfer reagents. J Amer Chem Soc 100(16):5213–5215

  266. Wrighton MS, Austin RG, Bocarsly AB, Bolts JM, Haas O, Legg KD, Nadjo L, Palazzotto MO (1978) A chemically derivatized platinum electrode: persistent attachment of an electroactive ferrocene derivative. J Electroanal Chem 87(3):429–433

    Article  CAS  Google Scholar 

  267. Bolts JM, Wrighton MS (1978) Chemically derivatized n-type semiconducting germanium photoelectrodes. Persistent attachment and photoelectrochemical activity of ferrocene derivatives. J Amer Chem Soc 100(17):5257–5262

  268. Bolts JM, Wrighton MS (1979) Chemically derivatized n-type semiconducting gallium arsenide photoelectrodes. Thermodynamically uphill oxidation of surface-attached ferrocene centers. J Amer Chem Soc 101(21):6179–6184

  269. Lewis NS, Bocarsly AB, Wrighton MS (1980) Heterogeneous electron transfer at designed semiconductor/liquid interfaces. Rate of reduction of surface-confined ferricenium centers by solution reagents. J Amer Chem Soc 84(16):2033–2043

  270. Wrighton MS, Austin RG, Bocarsly AB, Bolts JM, Haas O, Legg KD, Nadjo L, Palazzotto MC (1978) Design and study of a photosensitive interface: a derivatized n-type silicon photoelectrode. J Amer Chem Soc 100(5):1602–1603

    Article  CAS  Google Scholar 

  271. Wrighton MS, Bolts JM, Bocarsly AB, Palazzotto MO, Walton EG (1978) Stabilization of n-type semiconductors to photoanodic dissolution: II-VI and III-V compound semiconductors and recent results for n-type silicon. J Vac Sci Technol 15(4):1429–1435

    Article  ADS  CAS  Google Scholar 

  272. Bolts JM, Bocarsly AB, Palazzotto MO, Walton EG, Lewis NS, Wrighton MS (1979) Chemically derivatized n-type silicon photoelectrodes. Stabilization to surface corrosion in aqueous electrolyte solutions and mediation of oxidation reactions by surface-attached electroactive ferrocene reagents. J Amer Chem Soc 101(6):1378–1385

  273. Bocarsly AB, Walton EG, Wrighton MS (1980) Use of chemically derivatized n-type silicon photoelectrodes in aqueous media. Photooxidation of iodide, hexacyanoiron(II), and hexaammineruthenium(II) at ferrocene-derivatized photoanodes. J Amer Chem Soc 102(10):3390–3398

  274. Bruce JA, Wrighton MS (1981) Study of textured n-type silicon photoanodes: electron microscopy, Auger and electroanalytical characterization of chemically derivatized surfaces. J Electroanal Chem 122:93–109

    Article  CAS  Google Scholar 

  275. Calabrese GS, Lin M-S, Dresner J, Wrighton MS (1982) Photoelectrochemical cells based on amorphous hydrogenated silicon thin film electrodes and the behavior of photoconductor electrode materials. J Amer Chem Soc 104(9):2412–2417

    Article  CAS  Google Scholar 

  276. Ryswyk HV, Ellis AB (1986) Optical coupling of surface chemistry. Photoluminescent properties of a derivatized gallium arsenide surface undergoing redox chemistry. J Amer Chem Soc 108:2454–2455

    Article  Google Scholar 

  277. Sharp M, Petersson M (1981) Voltammetric determinations of surface charge-transfer kinetics for platinum–ferrocene chemically modified electrodes in sulpholane. J Electroanal Chem 122:409–415

    Article  CAS  Google Scholar 

  278. Smith DF, Willman K, Kuo K, Murray RW (1979) Chemically modified electrodes. XV. Electrochemistry and waveshape analysis of aminophenylferrocene bonded to acid chloride functionalized ruthenium, platinum, and tin oxide electrodes. J Electroanal Chem 95(2):217–227

  279. Zou C, Wrighton MS (1990) Synthesis of octamethylferrocene derivatives via reaction of (octamethylferrocenyl)methyl carbocation with nucleophiles and application to functionalization of surfaces. J Amer Chem Soc 112(21):7578–7584

    Article  CAS  Google Scholar 

  280. Mallouk TE, Cammarata V, Orayston JA, Wrighton MS (1986) Voltammetry at polymer-modified stationary and rotating microelectrodes. Application to determination of electron-transfer rates at polymer/solution interfaces. J Phys Chem 90(10):2150–2156

  281. Cuendet P, Grätzel M, Pèlaprat ML (1984) Viologen-derivatization of TiO2 particles and light-induced H2 evolution by immobilized hydrogenase. J Electroanal Chem 181:173–185

    Article  CAS  Google Scholar 

  282. Willman KW, Murray RW (1982) Viologen homopolymer, polymer mixture and polymer bilayer films on electrodes. Electropolymerization, electrolysis, spectroelectrochemistry, trace analysis and photoreduction. J Electroanal Chem 133(2):211–231

  283. Denisevich P, Willman KW, Murray RW (1981) Unidirectional current flow and charge state trapping at redox polymer interfaces on bilayer electrodes: principles, experimental demonstration, and theory. J Amer Chem Soc 103(16):4727–4737

    Article  CAS  Google Scholar 

  284. Kanda S, Murray RW (1985) Optical energy storage by bilayer electrodes, polymerized coordination compounds of ruthenium or iron. Bull Chem Soc Jap 58(10):3010–3015

    Article  CAS  Google Scholar 

  285. Lewis NS, Wrighton MS (1981) Electrochemical reduction of horse heart ferricytochrome c at chemicaily derivatized electrodes. Science 211(4485):944–947

    Article  ADS  CAS  PubMed  Google Scholar 

  286. Bruce JA, Murahashi T, Wrighton MS (1982) Characterization of structured interfaces for hydrogen generation. Study of an N,N’-4,4’-Dialkyl-4,4’-bipyridinium redox polymer/palladium catalyst system. J Phys Chem 86(9):1552–1563

  287. Stalder CJ, Chao S, Wrighton MS (1984) Synthesis and electrochemical reduction of aqueous bicarbonate to formate with high current efficiency near the thermodynamic potential at chemically derivatized electrodes. J Amer Chem Soc 106(12):3673–3675

    Article  CAS  Google Scholar 

  288. Fan FF, Bard AJ (1987) Ultrathin layer cell for electrochemical and electron transfer measurements. J Amer Chem Soc 109(21):6262–6268

    Article  CAS  Google Scholar 

  289. Kittlesen GP, White HS, Wrighton MS (1985) A microelectrochemical diode with submicron contact spacing based on the connection of two microelectrodes using dissimilar redox polymers. J Amer Chem Soc 107(25):7373–7380

    Article  CAS  Google Scholar 

  290. Moses PR, Murray RW (1976) Chemically modified electrodes. 3. SnO2 and TiO2 electrodes bearing an electroactive reagent. J Amer Chem Soc 98(23):7435–7436

  291. Abruña HD, Meyer TJ, Murray RW (1979) Chemical and electrochemical properties of 2,2’-bipyiridyl complexes of ruthenium covalently bound to platinum oxide electrodes. Inorg Chem 18(11):3233–3240

    Article  Google Scholar 

  292. Abruña HD, Walsh JL, Meyer TJ, Murray RW (1980) Can chemical reactivity patterns on chemically modified electrode surfaces be anticipated from solution reactivity? A study of ruthenium nitro complexes. J Amer Chem Soc 102(9):3272–3274

    Article  Google Scholar 

  293. Abruña HD, Walsh JL, Meyer TJ, Murray RW (1981) Kinetic applications of chemically modified electrodes. Oxidation, reduction, and linkage isomerization of a nitro complex of ruthenium attached to a silanized platinum electrode. Inorg Chem 20(5):1481–1486

  294. Ghosh PK, Spiro TG (1980) Photoelectrochemistry of tris(bipyridyl)ruthenium(II) covalently attached to n-type SnO2. J Amer Chem Soc 102(17):5543–5549

    Article  CAS  Google Scholar 

  295. Ghosh PK, Spiro TG (1981) Electroactive coatings of tris(bipyridyl)- and tris(o-phenanthroline)-ruthenium(ll) attached to electrodes via hydrosilylation or electropolymerization of vinyl derivatives. J Electrochem Soc 128(6):1281–1287

    Article  CAS  Google Scholar 

  296. Burt RJ, Leigh GJ, Pickett OJ (1976) Modification of a tin oxide electrode by attachment of iron-sulphur clusters. J Chem Soc Chem Commun 22:940–941

    Article  Google Scholar 

  297. Leigh GJ, Pickett CJ (1977) Electrochemical behaviour of organonitrile dinitrogen complexes of molybdenum(0) and Tungsten(0) and the anchoring of a dinitrogen complex to an electrode surface. J Chem Soc Dalton 1797–1800

  298. Fujihira M, Kubota T, Osa T (1981) Organo-modified metal oxide electrode. Part V. Efficiency of electron injection into conduction band from photo-excited dye molecule covalently attached to an SnO2 surface. J Electroanal Chem 119:379–387

    Article  CAS  Google Scholar 

  299. Shepard VR Jr, Armstrong NR (1979) Electrochemical and photoelectrochemical studies of copper and cobalt phthalocyanine-tin oxide electrodes. J Phys Chem 83(10):1268–1276

    Article  CAS  Google Scholar 

  300. Diaz AF (1977) Electrochemistry of some surface-bonded pyrazoline derivatives. J Amer Chem Soc 99(17):5838–5840

    Article  CAS  Google Scholar 

  301. Diaz AF, Kanazawa KK (1978) Second harmonic A.C. voltammetry of surface-bonded pyrazolines. J Electroanal Chem 86(2):441–444

  302. Diaz AF, Genies M (1981) Conformational constraints in the reactions of surface bonded intermediates. Electrochim Acta 26(6):687–689

    Article  CAS  Google Scholar 

  303. Kuo K-N, Moses PR, Lenhard JR, Green DC, Murray RW (1979) Immobilization, electrochemistry, and surface interactions of tetrathiafulvalene on chemically modified ruthenium and platinum oxide electrodes. Anal Chem 51(6):745–748

    Article  CAS  Google Scholar 

  304. Yamamoto N, Nagasawa Y, Shuto S, Tsubomura H (1981) Potentiometric and spectroscopic investigation of the reaction of fluorescein isothiocyanate with an amine chemically bound on solid surfaces. Bull Chem Soc Jap 54(2):323–326

    Article  CAS  Google Scholar 

  305. Osa T, Fujihira M (1976) Photocell using covalently-bound dyes on semiconductor surfaces. Nature 264:349–350

    Article  ADS  CAS  Google Scholar 

  306. Fujihira M, Ohishi N, Osa T (1977) Photocell using covalently-bound dyes on semiconductor surfaces. Nature 268(5617):226–228

    Article  ADS  CAS  Google Scholar 

  307. Katz EY, Shkuropatov AY, Vagabova OI, Shuvalov VA (1989) Coupling of photoinduced charge separation in reaction centers of photosynthetic bacteria with electron transfer to a chemically modified electrode. Biochirn Biophys Acta 976:121–128

    Article  Google Scholar 

  308. Mann-Buxbaum E, Pittner F, Schalkhammer T, Jachimowicz A, Jobst G, Oleaytug F, Urban G (1990) New microminiaturized glucose sensors using covalent immobilization techniques. Sens Actuat B1:518–522

    Article  Google Scholar 

  309. Solov’ev AA, Katz EY (1990) Why is covalent immobilization of quinones possible at electrodes via aminosilanes? J Electroanal Chem 277:337–339

    Article  CAS  Google Scholar 

  310. Katz EY, Shkuropatov AY, Vagabova OI, Shuvalov VA (1989) Chemical modification of the PtO electrode by naphthoquinone using aminosilane. J Electroanal Chem 260:53–62

    Article  Google Scholar 

  311. Smith DK, Lane GA, Wrighton MS (1986) pH Dependence of the electrochemical behavior of surfaces modified with a polymer derived from a monomer consisting of two viologen subunits linked by a quinone: Evidence for “rectification” by synthetic molecular materials. J Amer Chem Soc 108(12):3522–3525

    Article  CAS  Google Scholar 

  312. Firth BE, Miller LL, Mitani M, Rogers T, Lennox J, Murray RW (1976) Anodic and cathodic reactions on a chemically modified edge surface of graphite. J Amer Chem Soc 98(25):8271–8272

    Article  CAS  Google Scholar 

  313. Smolin EM, Rapoport L (1959) s-Triazines and derivatives. Interscience, NY, pp. 48–62, 68–90

  314. Berezin IV, Antonova VK, Martinek K (Eds) (1976) Immobilized Enzymes., Moscow State Univ. Press (in Russian: Бepeзин ИB, Иммoбилизoвaнныe фepмeнты, Mocквa, Bыcшaя шкoлa)

  315. Tse D, Kuwana T, Royer GP (1979) Stable attachment of redox groups for modified electrodes via cyanuric chloride. J Electroanal Chem 98:345–353

    Article  Google Scholar 

  316. Ianniello RM, Lindsay TJ, Yacynych AM (1982) Differential pulse voltammetric study of direct electron transfer in glucose oxidase chemically modified graphite electrodes. Anal Chem 54(7):1098–1101

    Article  CAS  Google Scholar 

  317. Ianniello RM, Yacynych AM (1981) Chemically modified graphite electrode with immobilized enzyme as a potentiometric sensor for some L-amino acids. Anal Chim Acta 131:123–132

    Article  CAS  Google Scholar 

  318. Lowe CR (1979) The affinity electrode. application to the assay of human serum albumin. FEBS Lett 106(2):405–408

  319. Hohman JR, Fox MA (1982) Covalently-attached dianions as sensitizers for photogalvanic effects at semiconductor electrodes. J Amer Chem Soc 104(2):401–404

    Article  CAS  Google Scholar 

  320. Ianniello RM, Yacynych AM (1981) Immobilized enzyme chemically modified electrode as an amperometric sensor. Anal Chem 53(13):2090–2095

    Article  CAS  Google Scholar 

  321. Jönsson G, Gorton L (1985) An amperometric glucose sensor made by modification of a graphite electrode surface with immobilized glucose oxidase and adsorbed mediator. Biosensors 1:355–368

    Article  PubMed  Google Scholar 

  322. Razumas VJ, Jasaitis JJ, Kulys JJ (1983) 566-Electrocatalytic oxidation of catechol phosphate by immobilized alkaline phosphatase. Bioelectrochem Bioenerg 10(5/6):427–439

    Article  CAS  Google Scholar 

  323. Osborn JA, Yacynych AM, Roberts DC (1986) A flow-injection system for assay of the activity of an immobilized enzyme chemically-modified electrode. Anal Chim Acta 183:287–292

    Article  CAS  Google Scholar 

  324. Lennox JC, Murray RW (1977) Chemically modified electrodes. VI. Binding and reversible electrochemistry of tetra(aminophenyl)porphyrin on glassy carbon. J Electroanal Chem 78(2):395–401

  325. Lennox JC, Murray RW (1978) Chemically modified electrodes. 10. Electron spectroscopy for chemical analysis and alternating current voltammetry of glassy carbon-bound tetra(aminophenyl)porphyrins. J Amer Chem Soc 100(12):3710–3714

  326. Rocklin RD, Murray RW (1979) Part XVII. Metallation of immobilized tetra(aminophenyl)porphyrin with manganese, iron, cobalt, nickel, copper and zinc, and electrochemistry of diprotonated tetraphenylporphyrin. J Electroanal Chem 100:271–282

    Article  CAS  Google Scholar 

  327. Tse DC-S, Kuwana T (1978) Electrocatalysis of dihydronicotinamide adenosine diphosphate with quinones and modified quinone electrodes. Anal Chem 50(9):1315–1218

    Article  CAS  Google Scholar 

  328. Oyama N, Anson FC (1979) Ligand substitution kinetics on ethylenediaminetetraacetato complexes of ruthenium(II) and ruthenium(III) covalently attached to graphite surfaces. J Amer Chem Soc 101(6):1634–1635

    Article  CAS  Google Scholar 

  329. Wieck HJ, Shea O, Yacynych AM (1982) Reticulated vitreous carbon electrode materials chemically modified with immobilized enzyme. Anal Chim Acta 142:277–279

    Article  CAS  Google Scholar 

  330. Wieck HJ, Heider GH Jr, Yacynych AM (1984) Chemically modified reticulated vitreous carbon electrode with immobilized enzyme as a detector in flow-injection determination of glucose. Anal Chim Acta 158:137–141

    Article  CAS  Google Scholar 

  331. Narasimhan K, Wingard LB Jr (1986) Enhanced direct electron transport with glucose oxidase immobilized on (aminophenyl)boronic acid modified glassy carbon electrode. Anal Chem 58(14):2984–2987

    Article  CAS  Google Scholar 

  332. Elliott CM, Marrese CA (1981) Catalytic reduction of some alkyl halides by iron porphyrin modified carbon electrodes. J Electroanal Chem 119(2):395–401

    Article  CAS  Google Scholar 

  333. Oyama N, Yap KB, Anson FC (1979) Spontaneous coating of graphite electrodes by amino ferrocenes. J Electroanal Chem 100:233–246

    Article  CAS  Google Scholar 

  334. Fujihira M, Tamura A, Osa T (1977) Organo-modified carbon electrodes. I. Studies of modified layer via amide bonds by capacitance measurements and ESCA. Chem Lett 361–366

  335. Arifuku F, Iwatani K, Ujimoto K, Kurihara U (1987) The catalytic electroreduction of oxygen in an aqueous solution on glassy carbon electrodes covalently modified with [5,10,15,20-tetrakis(4-carboxyphenyl)porphinato]iron (III). Bull Chem Soc Jap 60(5):1661–1665

    Article  CAS  Google Scholar 

  336. Anderson S, Constable EC, Dare-Edwards MP, Goodenough JB, Hamnett A, Seddon K, Wright RD (1979) Chemical modification of a titanium (IV) oxide electrode to give stable dye sensitisation without a supersensitiser. Nature 280(5723):571–573

    Article  ADS  CAS  Google Scholar 

  337. Pickup PG, Seddon KR (1982) Electrochemical and photophysical properties of a chemically modified electrode. Chem Phys Lett 92(5):548–550

    Article  ADS  CAS  Google Scholar 

  338. Kuo KN, Murray RW (1982) Activation of RuO2 and PtO electrode surfaces for immobilization reactions using thionyl chloride. J Electrochem Soc 129(4):756–761

    Article  CAS  Google Scholar 

  339. Gross E (1967) The cyanogen bromide reaction. Methods Enzymol 11:238–255

    Article  CAS  Google Scholar 

  340. Yamamoto N, Nagasawa Y, Shuto S, Sawai M, Sudo T, Tsubomura H (1978) The electrical method of investigation of the antigen-antibody and enzyme-enzyme inhibitor reactions using chemically modified electrodes. Chem Lett 3:245–246

    Article  Google Scholar 

  341. Yamamoto N, Nagasawa Y, Sawai M, Sudo T, Tsubomura H (1978) Potentiometric investigations of antigen-antibody and enzyme-enzyme inhibitor reactions using chemically modified metal electrodes. J Immunol Methods 22(3/4):309–317

    Article  CAS  PubMed  Google Scholar 

  342. Dunsch L, Inzelt G, Horányi G, Lubert K-H (1989) Radiotracer evidence proving the embedding of Cl- ions into glassy carbon electrodes. J Electroanal Chem 260:495–499

    Article  CAS  Google Scholar 

  343. Fujihira M, Tasaki S, Osa T, Kuwana T (1982) Photo-assisted electrochemical oxidation of isopopanol to acetone sensitized by photoexcited anthraquinone derivatives chemically bound on a carbone electrode. J Electroanal Chem 137(1):163–170

    Article  CAS  Google Scholar 

  344. Bogdanovskaya VA, Tarasevich MR, Hidekel ML, Kozub GI, Orlov SB (1984) Electrochemical and electrocatalytic properties of chemically modified carbon materials. Elektrokhimiya (USSR) 20(2):164–168

    CAS  Google Scholar 

  345. Smit MH, Cass AEG (1990) Cyanide detection using a substrate-regenerating, peroxidase-based biosensor. Anal Chem 62(22):2429–2436

    Article  CAS  PubMed  Google Scholar 

  346. Takiguchi T, Nonaka T (1985) Comparative study of monomeric and polymeric redox mediatores in indirect electrochemical reduction. Nippon Kagaku Kaishi 6:1147–1153 (in Japanese)

    Article  Google Scholar 

  347. Fujihira M, Osa T, Hursh D, Kuwana T (1978) Organo-modified metal oxide electrode. IV. Analysis of covalently bound rhodamine B photoelectrode. J Electroanal Chem 88:285–288

    Article  CAS  Google Scholar 

  348. Balachander N, Sukenik CN (1990) Monolayer transformation by nucleophilic substitution: applications to the creation of new monolayer assemblies. Langmuir 6(11):1621–1627

    Article  CAS  Google Scholar 

  349. Katz EY, Solov’ev AA (1990) Chemical modification of platinum and gold electrodes by naphthoquinones using amines containing sulfhydryl or disulphide groups. J Electroanal Chem 291:171–186

    Article  CAS  Google Scholar 

  350. Itaya K, Bard AJ (1978) Chemically modified polymer electrodes: synthetic approach employing poly(methacryl chloride) anchors. Anal Chem 50(11):1487–1489

    Article  CAS  Google Scholar 

  351. Gardies F, Jaffrezic-Renault N, Martelet C, Perrot H, Valleton J-M, Alegret S (1990) Micro-enzyme field effect transistor sensor using direct covalent bonding of urease. Anal Chim Acta 231:305–308

    Article  CAS  Google Scholar 

  352. López-Gallego F, Guisán JM, Betancor L (2013) Glutaraldehyde-mediated protein immobilization. Methods Mol Biol 1051:33–41

    Article  PubMed  Google Scholar 

  353. López-Gallego F, Guisan JM, Betancor L (2020) Immobilization of enzymes on supports activated with glutaraldehyde: a very simple immobilization protocol. Methods Mol Biol 2100:119–127

    Article  PubMed  Google Scholar 

  354. López-Gallego F, Betancor L, Mateo C, Hidalgo A, Alonso-Morales N, Dellamora-Ortiz G, Guisán JM, Fernández-Lafuente R (2005) Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. J Biotechnol 119(1):70–75

    Article  PubMed  Google Scholar 

  355. Nguyena HH, Kima M (2017) An overview of techniques in enzyme immobilization. Applied Sci Convergence Technol 26(6):157–163

    Article  Google Scholar 

  356. Solov’ev AA, Katz EY, Shuvalov VA, Erokhin YE (1991) Photoelectrochemical effects for chemically modified platinum electrodes with immobilized reaction centers from Rhodobacter sphaeroides R-26. Bioelectrochem Bioenerg 26(1):29–41

    Article  CAS  Google Scholar 

  357. Katz E, Schmidt H-L (1993) Gold electrode modification with a monolayer of molecular lines consisting of electron carriers with different redox potentials. J Electroanal Chem 360:337–342

    Article  CAS  Google Scholar 

  358. Martin SJ, Ricco AJ, Niemczyk TM, Frye GC (1989) Characterization of SH acoustic plate mode liquid sensors. Sens Actuat 20:253–268

    Article  CAS  Google Scholar 

  359. Dong W, Zhang Y, Xu J, Yin J-W, Nong S, Dong C, Liu Z, Dong B, Liu L-M, Si R, Chen M, Luo J, Huang F (2020) Subnano ruthenium species anchored on tin dioxide surface for efficient alkaline hydrogen evolution reaction. Cell Rep Phys Sci 1:100026

    Article  Google Scholar 

  360. Bain CD, Whitesides GM (1988) Depth sensitivity of wetting: monolayers of ω-mercapto ethers on gold. J Amer Chem Soc 110(17):5897–5898

    Article  CAS  Google Scholar 

  361. Kalcher K (1986) Voltammetrisches Verhalten von Gold an einer Dithizon-modifizierten Kohlepasteelektrode. Fresenius Z Anal Chem 325:181–185 (in German)

    Article  CAS  Google Scholar 

  362. Coffey S (Ed.) (1974) Rodd's chemistry of carbon compounds. 3(Part B):82. Amsterdam, Elsevier

  363. De A, Jaffrezic-Renault N (1987) Study of the interactions of Ag+ ions at the grafted silica/electrolyte interface by electrophoresis and labelled ion adsorption. Colloids Surfaces 27:159–162

    Article  CAS  Google Scholar 

  364. Anzai J-I, Lee S, Osa T (1989) Reactive Langmuir-Blodgett membrane for biosensor applications. Use of succinimidyl behenoate-based membranes as support for covalently immobilized α-chymotrypsin. Bull Chem Soc Jap 62(9):3018–3020

  365. Katz EY (1990) A chemically modified electrode capable of a spontaneous immobilization of amino compounds due to its functionalization with succinimidyl groups. J Electroanal Chem 291:257–260

    Article  Google Scholar 

  366. Miyasaka T, Koyama K, Watanabe T (1990) Amperometric glucose sensor with glucose oxidase immobilized on SnO2 electrode via a monolayer of a photoreactive nitrophenylazide derivative. Chem Lett 19(4):627–630

    Article  Google Scholar 

  367. Katz E, Sheeney-Ichia L, Willner I (2004) Electrical contacting of glucose oxidase in a redox-active rotaxane configuration. Angew Chem Int Ed 43:3292–3300

    Article  CAS  Google Scholar 

  368. Katz E, Lioubashevsky O, Willner I (2004) Electromechamics of a redox-active rotaxane in a monolayer assembly on an electrode. J Am Chem Soc 126(47):15520–15532

    Article  CAS  PubMed  Google Scholar 

  369. Katz E, Solov’ev AA (1992) Photobioelectrodes on the basis of photosynthetic reaction centers. Study of exogenous quinones as possible electron transfer mediators. Anal Chim Acta 266:97–106

    Article  Google Scholar 

  370. Alkire RC, Kolb DM, Lipkowski J, Ross PN (Eds.) (2009) Chemically modified electrodes. Wiley-VCH

  371. Simonet J (2017) Electro-catalysis at chemically modified solid surfaces. World Scientific

    Book  Google Scholar 

  372. Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD (2020) Fundamentals, applications, and future directions of bioelectrocatalysis. Chem Rev 120:12903–12993

    Article  CAS  PubMed  Google Scholar 

  373. Lojou E, Xiao X (Eds.) (2020) Enzymatic Bioelectrocatalysis. MDPI

  374. Mazurenko I, Hitaishi VPP, Lojou E (2020) Recent advances in surface chemistry of electrodes to promote direct enzymatic bioelectrocatalysis. Curr Opin Electrochem 19:113–121

    Article  CAS  Google Scholar 

  375. Bagheri H, Bordbar MM, Khoshfetrat SM, Hashemi P, Khoshsafar H, Khanmohammadi A, Sheini A (2023) Electrochemical sensors and biosensors—new attitudes in chemical and biological analysis. Elsevier

    Google Scholar 

  376. Katz E (Ed) (2014) Implantable bioelectronics. Devices, materials, and applications. Wiley-VCH, Weinheim

  377. Parlak O, Salleo A, Turner A (2020) Wearable Bioelectronics. Elsevier, Amsterdam

    Google Scholar 

  378. Luckarift HR, P. Atanassov B, Johnson GR (Eds.) (2014) Enzymatic fuel cells: from fundamentals to applications. Wiley

  379. Inamuddin, Ahamed MI, Boddula R, Rezakazemi M (Eds.) (2021) Biofuel Cells Mater Chall. Scrivener Publishing

  380. Szczupak A, Halámek J, Halámková L, Bocharova V, Alfonta L, Katz E (2012) Living battery—biofuel cells operating in vivo in clams. Energy Environmen Sci 5:8891–8895

    Article  CAS  Google Scholar 

  381. Katz E (2015) Implantable biofuel cells operating in vivo—potential power sources for bioelectronic devices. Bioelectron Med 2:1–12

    Article  Google Scholar 

  382. Katz E (2018) Signal-switchable electrochemical systems—materials, methods, and applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  383. Katz E (2019) Enzyme-Based Computing Systems. Wiley-VCH, Weinheim

    Book  Google Scholar 

  384. Aliofkhazraei M, Makhlouf ASH (Eds) (2016) Handbook of nanoelectrochemistry—electrochemical synthesis methods, properties, and characterization techniques. Springer

  385. Tverdokhlebova A, Sterin I, Smutok O, Katz E (2023) Modification of electrodes with self-assembled monolayers—general principles. J Solid State Electrochem in press https://doi.org/10.1007/s10008-023-05700-w

  386. Dong S, Li J (1997) Self-assembled monolayers of thiols on gold electrodes for bioelectrochemistry and biosensors. Bioelectrochem Bioenerg 42:7–13

    Article  CAS  Google Scholar 

  387. Eckermann AL, Feld DJ, J. Shaw A, Meade TJ, (2010) Electrochemistry of redox-active self-assembled monolayers. Coord Chem Rev 254:1769–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Yi R, Mao Y, Shen Y, Chen L (2021) Self-assembled monolayers for batteries. J Am Chem Soc 143(33):12897–12912

    Article  CAS  PubMed  Google Scholar 

  389. Horányi G (1990) Radiotracer study of the potential dependence of the adsorption of L-methionine at a platinized platinum electrode. J Electroanal Chem 280:425–427

    Article  Google Scholar 

  390. Horányi G, Rizmayer EM (1989) Induced adsorption of 45Ca labelled Ca2+ ions—a tool for the indirect radiotracer study of the adsorption of some organic acids at platinized platinum electrodes. Electrochim Acta 34(2):197–201

    Article  Google Scholar 

  391. Hinnen C, Niki K (1989) Roles of 4,4’-bipyridyl and bis(4-pyridyl) disulphide in the redox reaction of cytochrome c adsorbed on a gold electrode. Spectroelectrochemical studies J Electroanal Chem 264:157–165

    Article  CAS  Google Scholar 

  392. Gui Y, Kuwana T (1987) Long optical path length thin-layer spectroelectrochemistry. Quantitation and potential dependence of electroinactive species adsorbed on platinum. J Electroanal Chem 222:321–330

    Article  CAS  Google Scholar 

  393. Walczak MM, Chung C, Stole SM, Widrig CA, Porter MD (1991) Structure and interfacial properties of spontaneously adsorbed n-alkanethiolate monolayers on evaporated silver surfaces. J Amer Chem Soc 113(7):2370–2378

    Article  CAS  Google Scholar 

  394. Taniguchi I, Iseki M, Yamaguchi H, Yasukouchi K (1985) Surface enhanced Raman scattering from bis(4-pyridyl)-disulfide- and 4,4’-bipyridine-modified gold electrodes. J Electroanal Chem 186:299–307

    Article  CAS  Google Scholar 

  395. Hickman JJ, Ofer D, Zou C, Wrighton MS, Laibinis PE, Whitesides GM (1991) Selective functionalization of gold microstructures with ferrocenyl derivatives via reaction with thiols or disulfides: characterization by electrochemistry and Auger electron spectroscopy. J Amer Chem Soc 113(4):1128–1132

    Article  CAS  Google Scholar 

  396. Nuzzo RG, Zegarski BR, Dubois LH (1987) Fundamental studies of the chemisorption of organosulfur compounds on Au(111). Implications for molecular self-assembly on gold surfaces. J Amer Chem Soc 109(3):733–740

  397. Harris AL, Chidsey CED, Levinos NJ, Loiacono DN (1987) Monolayer vibrational spectroscopy by infrared-visible sum generation at metal and semiconductor surfaces. Chem Phys Lett 141(4):350–356

    Article  ADS  CAS  Google Scholar 

  398. Bain CD, Biebuyck HA, Whitesides GM (1989) Comparison of self-assembled monolayers on gold: coadsorption of thiols and disulfides. Langmuir 5(3):723–727

    Article  CAS  Google Scholar 

  399. Bain CD, Troughton EB, Tao Y-T, Evall J, Whitesides GM, Nuzzo RG (1989) Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Amer Chem Soc 111(1):321–335

    Article  CAS  Google Scholar 

  400. Strong L, Whitesides GM (1988) Structures of self-assembled monolayer films of organosulfur compounds adsorbed on gold single crystals: electron diffraction studies. Langmuir 4(3):546–558

    Article  CAS  Google Scholar 

  401. Chidsey CED, Liu G, Scoles G, Wang J (1990) Helium diffraction from overlayers physisorbed on a self-assembled organic monolayer. Langmuir 6(12):1804–1806

    Article  CAS  Google Scholar 

  402. Bain CD, Whitesides GM (1989) Formation of monolayers by the coadsorption of thiols on gold: Variation in the length of the alkyl chain. J Amer Chem Soc 111(18):7164–7175

    Article  CAS  Google Scholar 

  403. Dubois LH, Zegarski BR, Nuzzo RG (1990) Fundamental studies of microscopic wetting on organic surfaces. 2. Interaction of secondary adsorbates with chemically textured organic monolayers. J Amer Chem Soc 112(2):570–579

  404. Chu P, Richmond GL (1990) Comparative studies of the Ag/aqueous electrolyte interface by photoacoustic and non-linear optical techniques. J Electroanal Chem 296(1):203–219

    Article  CAS  Google Scholar 

  405. Santhanam KSV, Jespersen N, Bard AJ (1977) Application of a novel thermistor mercury electrode to the study of changes of activity of an adsorbed enzyme on electrochemical reduction and oxidation. J Amer Chem Soc 99(1):274–276

    Article  CAS  Google Scholar 

  406. di Gleria K, Hill HAO, Page DJ, Tew DG (1986) A spin labelled electrode. J Chem Soc Chem Commun 6:460–462

    Article  Google Scholar 

  407. Kelulsky EC, Fyfe CA (1986) Molecular motions of alkoxysilanes immobilized on silica surfaces: a deuterium NMR Study. J Amer Chem Soc 108(8):1746–1749

    Article  Google Scholar 

  408. Hewitt RW, Shepard AT, Baitinger WE, Winograd N, Ott GL, Degass WN (1978) Characterization of metal surfaces by secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Anal Chem 50(9):1286–1290

    Article  CAS  Google Scholar 

  409. Baltruschat H, Lu F, Song D, Lewis SK, Zapien DC, Frank DG, Salaita GN, Hubbard AT (1987) Adsorption of ferricyanide at Pt(111) as a function of electrode potential studied by Auger spectroscopy. J Electroanal Chem 234:229–235

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Oleh Smutok thanks Human Frontier Science Program (HFSP) for the fellowship allowing his work in the USA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oleh Smutok or Evgeny Katz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sterin, I., Tverdokhlebova, A., Smutok, O. et al. Chemically modifying electrodes—a classical tool box. J Solid State Electrochem 28, 757–827 (2024). https://doi.org/10.1007/s10008-023-05743-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05743-z

Keywords

Navigation