Skip to main content
Log in

Stabilization of Zn anodes via a butanediol additive

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Aqueous zinc ion batteries have shown great prospects in large-scale energy storage. However, severe dendritic growth and unrestrained side reactions have limited the high speed development of aqueous zinc ion batteries due to the instability of zinc anodes in aqueous electrolytes. Here, butanediol additive is introduced into ZnSO4 electrolyte to improve the stability of zinc anode by adjusting the solvation structure of zinc hydration layer. This leads to a long cycle life (1000 h), which is more than 8 times greater than that of ZnSO4 basic electrolyte, for Zn||Zn symmetric batteries utilizing 2 M ZnSO4 and 15% butanediol additions. The butanediol additive can also achieve high Coulombic efficiency with an average value of 99.58% in Zn||Cu batteries. The Zn||V2O5 full battery exhibits a maximum capacity of 205 mAh g−1, and even after 1000 cycles at 1.0 A g−1, it still has a high reversible specific capacity of 177 mAh g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li HF, Ma LT, Han CP, Wang ZF, Liu ZX, Tang ZJ, Zhi CY (2019) Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62:550–587. https://doi.org/10.1016/j.nanoen.2019.05.059

    Article  CAS  Google Scholar 

  2. Qin RZ, Wang YT, Zhang MZ, Wang Y, Ding SX, Song AY, Yi HC, Yang LY, Song YL, Cui YH, Liu J, Wang ZQ, Li SN, Zhao QH, Pan F (2021) Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 80:105478. https://doi.org/10.1016/j.nanoen.2020.105478

    Article  CAS  Google Scholar 

  3. Tang BY, Shan LT, Liang SQ, Zhou J (2019) Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ Sci 12:3288–3304. https://doi.org/10.1039/c9ee02526j

    Article  CAS  Google Scholar 

  4. Liu CC, Lu QQ, Omar A, Mikhailova D (2021) A facile chemical method enabling uniform Zn deposition for improved aqueous Zn-ion batteries. Nanomaterials 11:764. https://doi.org/10.3390/nano11030764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guo X, Zhang Z, Li J, Luo N, Chai G-L, Miller TS, Lai F, Shearing P, Brett DJL, Han D, Weng Z, He G, Parkin IP (2021) Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett 6:395–403. https://doi.org/10.1021/acsenergylett.0c02371

    Article  CAS  Google Scholar 

  6. Du WC, Ang EHX, Yang Y, Zhang YF, Ye MH, Li CC (2020) Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ Sci 13:3330–3360. https://doi.org/10.1039/d0ee02079f

    Article  CAS  Google Scholar 

  7. Xu K, Zheng XH, Luo RH, Sun JF, Ma YR, Chen N, Wang MM, Song L, Zhao QB, Chen W (2023) A three-dimensional zincophilic nano-copper host enables dendrite-free and anode-free Zn batteries. Materials Today Energy 34:101284. https://doi.org/10.1016/j.mtener.2023.101284

    Article  CAS  Google Scholar 

  8. Wang Y, Liang BC, Zhu JX, Li G, Li Q, Ye RQ, Fan J, Zhi CY (2023) Manipulating electric double layer adsorption for stable solid-electrolyte interphase in 2.3 ah Zn-pouch cells. Angew Chem Int Ed 62:e202302583. https://doi.org/10.1002/anie.202302583

  9. Park SH, Byeon SY, Park JH, Kim C (2021) Insight into the critical role of surface hydrophilicity for dendrite-free zinc metal anodes. ACS Energy Lett 6:3078–3085. https://doi.org/10.1021/acsenergylett.1c01521

    Article  CAS  Google Scholar 

  10. Liu XY, Lu QQ, Yang AK, Qian YT (2023) High ionic conductive protection layer on Zn metal anode for enhanced aqueous zinc-ion batteries. Chin Chem Lett 34:107703. https://doi.org/10.1016/j.cclet.2022.07.046

    Article  CAS  Google Scholar 

  11. Lu QQ, Liu CC, Du YH, Wang XY, Ding L, Omar A, Mikhailova D (2021) Uniform Zn deposition achieved by Ag coating for improved aqueous zinc-ion batteries. ACS Appl Mater Interfaces 13:16869–16875. https://doi.org/10.1021/acsami.0c22911

    Article  CAS  PubMed  Google Scholar 

  12. Luo L, Liu Y, Shen Z, Wen Z, Chen S, Hong G (2023) High-voltage and stable manganese hexacyanoferrate/zinc batteries using gel electrolytes. ACS Appl Mater Interfaces xxxx:xxx-xxx. https://doi.org/10.1021/acsami.3c00905

  13. Xie CL, Liu SF, Zhang WX, Ji HM, Chu SQ, Zhang Q, Tang YG, Wang HY (2023) Robust and wide temperature-range zinc metal batteries with unique electrolyte and substrate design. Angew Chem Int Ed e202304259. https://doi.org/10.1002/anie.202304259

  14. Peng MK, Tang XN, Xiao K, Hu T, Yuan K, Chen YW (2023) Polycation-regulated electrolyte and interfacial electric fields for stable zinc metal batteries. Angew Chem Int Ed e202302701. https://doi.org/10.1002/anie.202302701

  15. Sun R, Han D, Cui C, Han Z, Guo X, Zhang B, Guo Y, Liu Y, Weng Z, Yang Q-H (2023) A self-deoxidizing electrolyte additive enables highly stable aqueous zinc batteries. Angew Chem (Int ed Eng) e202303557. https://doi.org/10.1002/anie.202303557

  16. Yu HM, Chen DP, Li QY, Yan CS, Jiang ZH, Zhou LJ, Wei WF, Ma JM, Ji XB, Chen YJ, Chen LB (2023) In situ construction of anode-molecule interface via lone-pair electrons in trace organic molecules additives to achieve stable zinc metal anodes. Adv Energy Mater 13:2300550. https://doi.org/10.1002/aenm.202300550

    Article  CAS  Google Scholar 

  17. Zhou WJ, Chen MF, Quan YH, Ding J, Cheng HL, Han X, Chen JZ, Liu B, Shi SQ, Xu XW (2023) Stabilizing zinc deposition through solvation sheath regulation and preferential adsorption by electrolyte additive of lithium difluoro(oxalato) borate. Chem Eng J 457:141328. https://doi.org/10.1016/j.cej.2023.141328

    Article  CAS  Google Scholar 

  18. Li YH, Wu PF, Zhong W, Xie CL, Xie YL, Zhang Q, Sun D, Tang YG, Wang HY (2021) A progressive nucleation mechanism enables stable zinc stripping-plating behavior. Energy Environ Sci 14:5563–5571. https://doi.org/10.1039/d1ee01861b

    Article  CAS  Google Scholar 

  19. Wang ML, Cheng YJ, Zhao HA, Gao JW, Li JP, Wang YZ, Qiu JY, Zhang H, Chen XB, Wei YJ (2023) A multifunctional organic electrolyte additive for aqueous zinc ion batteries based on polyaniline cathode. Small 2302105. https://doi.org/10.1002/smll.202302105

  20. Liu ZX, Wang R, Ma QW, Wan JD, Zhang SL, Zhang LH, Li HB, Luo QQ, Wu J, Zhou TF, Mao JF, Zhang L, Zhang CF, Guo ZP (2023) A dual-functional organic electrolyte additive with regulating suitable overpotential for building highly reversible aqueous zinc ion batteries. Adv Funct Mater 2214538. https://doi.org/10.1002/adfm.202214538

  21. Zhang Q, Luan JY, Fu L, Wu SG, Tang YG, Ji XB, Wang HY (2019) The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew Chem Int Ed 58:15841–15847. https://doi.org/10.1002/anie.201907830

    Article  CAS  Google Scholar 

  22. Xu WN, Zhao KN, Huo WC, Wang YZ, Yao G, Gu X, Cheng HW, Mai LQ, Hu CG, Wang XD (2019) Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 62:275–281. https://doi.org/10.1016/j.nanoen.2019.05.042

    Article  CAS  Google Scholar 

  23. Hao JN, Yuan LB, Ye C, Chao DL, Davey K, Guo ZP, Qiao SZ (2021) Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew Chem Int Ed 60:7366–7375. https://doi.org/10.1002/anie.202016531

    Article  CAS  Google Scholar 

  24. Geng LS, Meng JS, Wang XP, Han CH, Han K, Xiao ZT, Huang M, Xu P, Zhang L, Zhou L, Mai LQ (2022) Eutectic electrolyte with unique solvation structure for high-performance zinc-ion batteries. Angew Chem Int Ed 61:e202206717. https://doi.org/10.1002/anie.202206717

  25. Dong Y, Miao LC, Ma GQ, Di SL, Wang YY, Wang LB, Xu JZ, Zhang N (2021) Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries. Chem Sci 12:5843–5852. https://doi.org/10.1039/d0sc06734b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cao LS, Li D, Hu EY, Xu JJ, Deng T, Ma L, Wang Y, Yang XQ, Wang CS (2020) Solvation structure design for aqueous Zn metal batteries. J Am Chem Soc 142:21404–21409. https://doi.org/10.1021/jacs.0c09794

    Article  CAS  PubMed  Google Scholar 

  27. Sun P, Ma L, Zhou WH, Qiu MJ, Wang ZL, Chao DL, Mai WJ (2021) Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew Chem Int Ed 60:18247–18255. https://doi.org/10.1002/anie.202105756

    Article  CAS  Google Scholar 

  28. Zhang SJ, Hao JN, Luo D, Zhang PF, Zhang BK, Davey K, Lin Z, Qiao SZ (2021) Dual-function electrolyte additive for highly reversible Zn anode. Adv Energy Mater 11:2102010. https://doi.org/10.1002/aenm.202102010

    Article  CAS  Google Scholar 

  29. Wang K, Liu FM, Li QR, Zhu JQ, Qiu T, Liu XX, Sun XQ (2023) An electrolyte additive for interface regulations of both anode and cathode for aqueous zinc-vanadium oxide batteries. Chem Eng J 452:139577. https://doi.org/10.1016/j.cej.2022.139577

    Article  CAS  Google Scholar 

  30. Wang BJ, Zheng R, Yang W, Han X, Hou CY, Zhang QH, Li YG, Li KR, Wang HZ (2022) Synergistic solvation and interface regulations of eco-friendly silk peptide additive enabling stable aqueous zinc-ion batteries. Adv Funct Mater 32:2112693. https://doi.org/10.1002/adfm.202112693

    Article  CAS  Google Scholar 

  31. Zeng XM, Meng XJ, Jiang W, Ling M, Yan LJ, Liang CD (2021) In-situ constructing polyacrylamide interphase enables dendrite-free zinc anode in aqueous batteries. Electrochim Acta 378:138106. https://doi.org/10.1016/j.electacta.2021.138106

    Article  CAS  Google Scholar 

  32. Miao ZY, Liu QL, Wei WR, Zhao XR, Du M, Li HZ, Zhang F, Hao M, Cui ZH, Sang YH, Wang XW, Liu H, Wang SH (2022) Unveiling unique steric effect of threonine additive for highly reversible Zn anode. Nano Energy 97:107145. https://doi.org/10.1016/j.nanoen.2022.107145

    Article  CAS  Google Scholar 

  33. Bayaguud A, Luo X, Fu YP, Zhu CB (2020) Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett 5:3012–3020. https://doi.org/10.1021/acsenergylett.0c01792

    Article  CAS  Google Scholar 

  34. Cui J, Liu XY, Xie YH, Wu K, Wang YQ, Liu YY, Zhang JJ, Yi J, Xia YY (2020) Improved electrochemical reversibility of Zn plating/stripping: a promising approach to suppress water-induced issues through the formation of H-bonding. Mater Today Energy 18:100563. https://doi.org/10.1016/j.mtener.2020.100563

  35. Hou Z, Tan H, Gao Y, Li MH, Lu ZH, Zhang B (2020) Tailoring desolvation kinetics enables stable zinc metal anodes. J Mater Chem A 8:19367–19374. https://doi.org/10.1039/d0ta06622b

    Article  CAS  Google Scholar 

  36. Zheng JX, Zhao Q, Tang T, Yin JF, Quilty CD, Renderos GD, Liu XT, Deng Y, Wang L, Bock DC, Jaye C, Zhang DH, Takeuchi ES, Takeuchi KJ, Marschilok AC, Archer LA (2019) Reversible epitaxial electrodeposition of metals in battery anodes. Science 366:645–648. https://doi.org/10.1126/science.aax6873

    Article  CAS  PubMed  Google Scholar 

  37. Chi SS, Wang QR, Han B, Luo C, Jiang YD, Wang J, Wang CY, Yu Y, Deng YH (2020) Lithiophilic Zn sites in porous CuZn alloy induced uniform Li nucleation and dendrite-free Li metal deposition. Nano Lett 20:2724–2732. https://doi.org/10.1021/acs.nanolett.0c00352

    Article  CAS  PubMed  Google Scholar 

  38. Zheng JX, Tan GY, Shan P, Liu TC, Hu JT, Feng YC, Yang LY, Zhang MJ, Chen ZH, Lin Y, Lu J, Neuefeind JC, Ren Y, Amine K, Wang LW, Xu K, Pan F (2018) Understanding thermodynamic and kinetic contributions in expanding the stability window of aqueous electrolytes. Chem 4:2872–2882. https://doi.org/10.1016/j.chempr.2018.09.004

    Article  CAS  Google Scholar 

  39. Luo MH, Wang CY, Lu HT, Lu YH, Xu BB, Sun WP, Pan HG, Yan M, Jiang YZ (2021) Dendrite-free zinc anode enabled by zinc-chelating chemistry. Energy Stor Mater 41:515–521. https://doi.org/10.1016/j.ensm.2021.06.026

    Article  Google Scholar 

  40. Liang PC, Yi J, Liu XY, Wu K, Wang Z, Cui J, Liu YY, Wang YG, Xia YY, Zhang JJ (2020) Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv Funct Mater 30:1908528. https://doi.org/10.1002/adfm.201908528

    Article  CAS  Google Scholar 

  41. Liu WB, Dong LB, Jiang BZ, Huang YF, Wang XL, Xu CJ, Kang Z, Mou J, Kang FY (2019) Layered vanadium oxides with proton and zinc ion insertion for zinc ion batteries. Electrochim Acta 320:134565. https://doi.org/10.1016/j.electacta.2019.134565

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by Key Laboratory of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lezi Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L. Stabilization of Zn anodes via a butanediol additive. J Solid State Electrochem 28, 507–515 (2024). https://doi.org/10.1007/s10008-023-05703-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05703-7

Keywords

Navigation