Skip to main content
Log in

In-situ growth of Ni–Co LDH/ZnCu2O4 nanostructure arrays on Ni foam as electrode material for high areal-capacitance supercapacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, a nanoarray electrode consisting of ZnCu2O4 nanoparticles (ZnCu2O4 NPs) and Ni–Co layered double hydroxide (Ni–Co LDH) nanoparticles supported on Ni foam (NF) is successfully achieved by an in situ growth route. The pre-formed ZnCu2O4 nanoparticles on Ni foam operate as a substrate and then guide the Ni–Co LDH nanoparticles on their surface by facile hydrothermal method. Electrochemical performances of the Ni–Co LDH/ZnCu2O4 nanoparticles are evaluated by cyclic voltammetry (CV), galvanostatic charge-discharge techniques (GCD), electrochemical impedance spectroscopy (EIS), and cycle life measurements in 2 mol L–1 KOH electrolyte. The Ni–Co LDH/ZnCu2O4 electrode achieves a maximum capacity of 3511.77 F g–1 at 1 A g–1 with raising cycling stability of 99.84% capacitance retention after 5000 cycles at 8 A g–1, together with ~ 100% Coulombic efficiency. In addition, an asymmetric supercapacitor is fabricated using Ni–Co LDH/ZnCu2O4 NPs on Ni foam (Ni–Co LDH/ZnCu2O4 NPs/NF) as the positive electrode, and activated carbon on Ni foam (AC/NF) as the negative electrode, which shows an operation voltage of 1.15 V, and high specific energy of 103.16 Wh kg–1 at a specific power of 824.97 W kg–1 with good cycling stability of 97.88% capacitance retention after 5000 cycles at 2 A g–1. Moreover, the asymmetric device displays improved low self-discharge behavior by charging it at an optimal current density and time, and the self-discharge is severely suppressed due to the presence of a 3D network of Ni–Co LDH/ZnCu2O4 NPs grown on nickel foam. The unique core-shell configuration of Ni–Co LDH/ZnCu2O4 can make full use of the synergistic effects of two components, provide sufficient electroactive sites, as well as facilitate the charge transport process because of their considerable electrochemical properties, making it a potential choice for electrochemical energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mandal S, Hu J, Shi SQ (2023) A comprehensive review of hybrid supercapacitor from transition metal and industrial crop based activated carbon for energy storage applications. Mater Today Commun 34:105207

    Article  CAS  Google Scholar 

  2. Poonam SK, Arora A, Tripathi SK (2019) Review of supercapacitors: materials and devices. J Energy Storage 21:801–825

    Article  Google Scholar 

  3. Ashritha MG, Hareesh K (2020) A review on graphitic carbon nitride based binary nanocomposites as supercapacitors. J Energy Storage 32:101840

    Article  Google Scholar 

  4. Zhou Y, Jiang Y, Hu Z, Lang X (2019) Preparation and application of Co(OH)2/Ni-Co LDH as electrodes in supercapacitors. Int J Electrochem Sci 14:5396–5407

    Article  CAS  Google Scholar 

  5. Zheng W, Sun S, Xu Y, Yu R, Li H (2018) Facile synthesis of NiAl-LDH/MnO2 and NiFe-LDH/MnO2 composites for high performance asymmetric supercapacitors. J Alloys Compd 768:240–248

    Article  CAS  Google Scholar 

  6. Abbasi L, Arvand M (2018) Engineering hierarchical ultrathin CuCo2O4 nanosheets array on Ni foam by rapid electrodeposition method toward high-performance binder-free supercapacitors. Appl Surf Sci 445:272–280

    Article  CAS  Google Scholar 

  7. Daneshvar S, Arvand M (2020) In-situ growth of hierarchical Ni-Co LDH/CoMoO4 nanosheets arrays on Ni foam for pseudocapacitors with robust cycle stability. J Alloys Compd 815:152421

    Article  CAS  Google Scholar 

  8. Alipour S, Arvand M (2020) Two-step in-situ hydrothermal synthesis of nanosheet-constructed porous MnMoS4 arrays on 3D Ni foam as a binder-free electrode in high performance Supercapacitors. Colloids Surf A Physicochem Eng Asp 606:125456

  9. Sharifi A, Arvand M, Daneshvar S (2020) A novel flexible wire-shaped supercapacitor with enhanced electrochemical performance based on hierarchical Co(OH)2@Ni(OH)2 decorated porous dendritic Ni film/Ni wire. J Alloys Compd 856:158101

    Article  Google Scholar 

  10. Abbasi L, Arvand M, Moosavifard SE (2020) Facile template-free synthesis of 3D hierarchical ravine-like interconnected MnCo2S4 nanosheet arrays for hybrid energy storage device. Carbon 161:299–308

    Article  CAS  Google Scholar 

  11. Liu M, Wang L, Yu X, Zhang H, Zhang H, Li S, Huang F (2022) Introducing oxygen vacancies for improving the electrochemical performance of Co9S8@NiCo-LDH nanotube arrays in flexible all-solid battery-capacitor hybrid supercapacitors. Energy 238:121767

    Article  CAS  Google Scholar 

  12. Wan L, Chen D, Liu J, Zhang Y, Chen J, Xie M, Du C (2020) Construction of FeNiP@CoNi-layered double hydroxide hybrid nanosheets on carbon cloth for high energy asymmetric supercapacitors. J Power Sources 465:228293

    Article  CAS  Google Scholar 

  13. Li H, Qi C, Tao Y, Liu H, Wang DW, Li F, Yang QH, Cheng HM (2019) Quantifying the volumetric performance metrics of supercapacitors. Adv Energy Mater 9:1900079

    Article  Google Scholar 

  14. Mustaqeem M, Naikoo GA, Rahimi F, Pedram MZ, Pourfarzad H, Hassan IU, Arshad F, Chen YF (2022) Rational design of Cu based composite electrode materials for high-performance supercapacitors: a review. J Energy Storage 51:104330

    Article  Google Scholar 

  15. Kim CH, Kim BH (2015) Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes. J Power Sources 274:512–520

    Article  CAS  Google Scholar 

  16. Luo L, He B, Kong W, Wang Z (2017) NiCo2S4/Ni-Co layered double hydroxide nanocomposite prepared by a vapor-phase hydrothermal method for electrochemical capacitor application. J Alloys Compd 705:349–355

    Article  CAS  Google Scholar 

  17. Ma FX, Yu L, Xu CY, Lou XW (2016) Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties. Energy Environ Sci 9:862–866

    Article  Google Scholar 

  18. Yu XY, Yu L, Lou XW (2016) Metal sulfide hollow nanostructures for electrochemical energy storage. Adv Energy Mater 6:1501333

    Article  Google Scholar 

  19. Li L, Hui KS, Hui KN, Xia Q, Fu J, Cho YR (2017) Facile synthesis of NiAl layered double hydroxide nanoplates for high-performance asymmetric supercapacitor. J Alloys Compd 721:803–812

    Article  CAS  Google Scholar 

  20. Shao M, Zhang R, Li Z, Wei M, Evans DG, Duan X (2015) Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications. Chem Comm 51:15880–15893

    Article  CAS  PubMed  Google Scholar 

  21. Zhang L, Yao HC, Li ZH, Sun PP, Liu F, Dong C, Wang JS, Li ZJ, Wu MW, Zhang C, Zhao B (2017) Synthesis of delaminated layered double hydroxides and their assembly with graphene oxide for supercapacitor application. J Alloys Compd 711:31–41

    Article  CAS  Google Scholar 

  22. Cavani F, Trifirò F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11:173–301

    Article  CAS  Google Scholar 

  23. Gomes A, Cocke D, Tran D, Baksi A (2015) Layered double hydroxides in energy research: advantages and challenges. Energy Technol 309–316

  24. Lu Y, Jiang B, Fang L, Fan S, Wu F, Hu B, Meng F (2017) Highly sensitive nonenzymatic glucose sensor based on 3D ultrathin NiFe layered double hydroxide nanosheets. Electroanalysis 29:1755–1761

    Article  CAS  Google Scholar 

  25. Liu L, Guan T, Fang L, Wu F, Lu Y, Luo H, Song X, Zhou M, Hu B, Wei D (2018) Self-supported 3D NiCo-LDH/Gr composite nanosheets array electrode for high-performance supercapacitor. J Alloys Compd 763:926–934

    Article  CAS  Google Scholar 

  26. Haque M, Li Q, Rigato C, Rajaras A, Smith AD, Lundgren P, Enoksson P (2021) Identification of self-discharge mechanisms of ionic liquid electrolyte based supercapacitor under high-temperature operation. J Power Sources 485:229328

    Article  CAS  Google Scholar 

  27. Jagadale A, Zhou X, Xiong R, Dubal DP, Xu J, Yang S (2019) Lithium ion capacitors (LICs): development of the materials. Energy Storage Mater 19:314–329

    Article  Google Scholar 

  28. Lukatskaya MR, Dunn B, Gogotsi Y (2016) Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun 7:12647

    Article  PubMed  PubMed Central  Google Scholar 

  29. Evanko B, Boettcher SW, Yoo SJ, Stucky GD (2017) Redox-enhanced electrochemical capacitors: status, opportunity, and best practices for performance evaluation. ACS Energy Lett 2:2581–2590

    Article  CAS  Google Scholar 

  30. Fan LQ, Tu QM, Geng CL, Huang JL, Gu Y, Lin J, Huang YF, Wu JH (2020) High energy density and low self-discharge of a quasi-solid-state supercapacitor with carbon nanotubes incorporated redox-active ionic liquid-based gel polymer electrolyte. Electrochim Acta 331:135425

    Article  CAS  Google Scholar 

  31. Chen L, Bai H, Li L (2014) Mechanism investigation and suppression of self-discharge in active electrolyte enhanced supercapacitors. Energy Environ Sci 7:1750–1759

    Article  CAS  Google Scholar 

  32. Ovhal MM, Kumar N, Hong SK, Lee HW, Kang JW (2020) Asymmetric supercapacitor featuring carbon nanotubes and nickel hydroxide grown on carbon fabric: a study of self-discharging characteristics. J Alloys Compd 828:154447

    Article  CAS  Google Scholar 

  33. Conway BE, Pell WG, Liu T (1997) Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries. J Power Sources 65:53–59

    Article  CAS  Google Scholar 

  34. Farahpour M, Arvand M (2021) Single-pot hydrothermal synthesis of copper molybdate nanosheet arrays as electrode materials for high areal-capacitance supercapacitor. J Energy Storage 40:102742

    Article  Google Scholar 

  35. Arefi MR, Rezaei-Zarchi S (2012) Synthesis of zinc oxide nanoparticles and their effect on the compressive strength and setting time of self-compacted concrete paste as cementitious composites. Int J Mol Sci 13:4340–4350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang X, Sun S, Lv J, Tang L, Kong C, Song X, Yang Z (2014) Nanoparticle-aggregated CuO nanoellipsoids for high-performance non-enzymatic glucose detection. J Mater Chem A 2:10073

    Article  CAS  Google Scholar 

  37. Daneshvar S, Arvand M (2020) In-situ growth of hierarchical Ni-Co LDH/CoMoO4 nanosheets arrays on Ni foam for pseudocapacitors with robust cycle stability. J Alloys Compd 815:15242

    Article  Google Scholar 

  38. Juliet Christina Mary A, Chandra Bose A (2017) Hydrothermal synthesis of Mn-doped ZnCo2O4 electrode material for high-performance supercapacitor. Appl Surf Sci 425:201–211

    Article  Google Scholar 

  39. Silambarasan M, Ramesh PS, Geetha D, Ravikumar K, Elhosiny Ali H, Algarni H, Soundhirarajan P, Chandekar KV, Shkir M (2021) A facile preparation of zinc cobaltite (ZnCo2O4) nanostructures for promising supercapacitor applications. J Inorg Organomet Polym Mater 31:3905–3920

    Article  CAS  Google Scholar 

  40. Yang F, Chu J, Cheng Y, Gong J, Wang X, Xiong S (2021) Hydrothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on biomass carbon skeleton for high performance supercapacitor. Chem Res Chin Univ 37:772–777

    Article  CAS  Google Scholar 

  41. Liu Y, Teng X, Mi Y, Chen Z (2017) A new architecture design of Ni-Co LDHs-based pseudocapacitors. J Mater Chem A 5:24407–24415

    Article  CAS  Google Scholar 

  42. Chen H, Wang J, Han X, Liao F, Zhang Y, Gao L, Xu C (2019) Facile synthesis of mesoporous ZnCo2O4 hierarchical microspheres and their excellent supercapacitor performance. Ceram Int 45:8577–8584

    Article  CAS  Google Scholar 

  43. Wang QH, Zhu YX, Xue J, Zhao XS, Guo ZP, Wang C (2016) General synthesis of porous mixed metal oxide hollow spheres with enhanced supercapacitive properties. ACS Appl Mater Int 8:17226–17232

    Article  CAS  Google Scholar 

  44. Lu W, Yan H, Quin K, Cheng J, Wang W, Liu X, Tang C, Kim JK, Luo Y (2015) Hierarchical porous CuO nanostructures with tunable properties for high performance supercapacitors. RSC Adv 5:10773–10781

    Article  CAS  Google Scholar 

  45. Moosavifard SE, El-Kady MF, Rahmanifar MS, Kaner RB, Mousavi MF (2015) Designing 3D highly ordered nanoporous CuO electrodes for high performance asymmetric supercapacitors. ACS Appl Mater Interfaces 7:4851–4860

    Article  CAS  PubMed  Google Scholar 

  46. Wang X, Sumboja A, Lin M, Yan J, Lee PS (2012) Enhancing electrochemical reaction sites in nickel-cobalt layered double hydroxides on zinc tin oxide nanowires: a hybrid material for an asymmetric supercapacitor device. Nanoscale 4:7266–7272

    Article  CAS  PubMed  Google Scholar 

  47. Xu J, Gai S, He F, Niu N, Gao P, Chen Y, Yang P (2014) Reduced graphene oxide/Ni1-xCoxAl-layered double hydroxide composites: preparation and high supercapacitor performance. J Chem Soc Dalton Trans 43:11667–11675

    Article  CAS  Google Scholar 

  48. Liang YY, Bao SJ, Li HL (2007) Nanocrystalline nickel cobalt hydroxides/ultrastable Y zeolite composite for electrochemical capacitors. J Solid State Electrochem 11:571–576

    Article  CAS  Google Scholar 

  49. Yuan Z, Wang H, Shen J, Ye P, Ning J, Zhong Y, Hu Y (2020) Hierarchical Cu2S@NiCo-LDH double-shelled nanotube arrays with enhanced electrochemical performance for hybrid supercapacitors. J Mater Chem A 8:22163–22174

  50. Moosavifard SE, Shamsi J, Fani S, Kadkhodazade S (2014) 3D ordered nanoporous NiMoO4 for high-performance supercapacitor electrode materials. RSC Adv 4:52555–52561

    Article  CAS  Google Scholar 

  51. Lu XF, Wu DJ, Li RZ, Li Q, Ye SH, Tong YX, Li GR (2014) Hierarchical NiCo2O4 nanosheets@hollow microrod arrays for high-performance asymmetric supercapacitors. J Mater Chem A 2:4706–4713

    Article  CAS  Google Scholar 

  52. Haque M, Li Q, Smith AD, Kuzmenko V, Rudquist P, Lundgren P, Enoksson P (2020) Self-discharge and leakage current mitigation of neutral aqueous-based supercapacitor by means of liquid crystal additive. J Power Sources 453:227897

  53. Guan X, Huang M, Yang L, Wang G, Guan X (2019) Facial design and synthesis of CoSx/Ni-Co LDH nanocages with rhombic dodecahedral structure for high-performance asymmetric supercapacitors. Chem Eng J 372:151–162

    Article  CAS  Google Scholar 

  54. Chen W, Wang J, Ma KY, Li M, Guo SH, Liu F, Cheng JP (2018) Hierarchical NiCo2O4@Co-Fe LDH core-shell nanowire arrays for high-performance supercapacitor. Appl Surf Sci 451:280–288

    Article  CAS  Google Scholar 

  55. Bai X, Cao D, Zhang H (2019) Constructing ZnCo2O4@LDH core-shell hierarchical structure for high performance supercapacitor electrodes. Ceram Int 45:14943–14952

    Article  CAS  Google Scholar 

  56. Ouyang Y, Xia X, Ye H, Wang L, Jiao X, Lei W, Hao Q (2018) Three-dimensional hierarchical structure ZnO@C@NiO on carbon cloth for asymmetric supercapacitor with enhanced cycle stability. ACS Appl Mater Interfaces 10:3549–3561

    Article  CAS  PubMed  Google Scholar 

  57. Zhou J, Li Q, Chen C, Li Y, Tao K, Han L (2018) Co3O4@CoNi-LDH core/shell nanosheet arrays for high-performance battery type supercapacitors. Chem Eng J 350:551–558

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the post-graduate office of Guilan University for the support of this work.

Author information

Authors and Affiliations

Authors

Contributions

Zeinab Shoghi: methodology, investigation, and writing—original draft. Majid Arvand: conceptualization, visualization, supervision, and writing—review and editing. Mona Farahpour: methodology and writing—review and editing.

Corresponding author

Correspondence to Majid Arvand.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoghi, Z., Arvand, M. & Farahpour, M. In-situ growth of Ni–Co LDH/ZnCu2O4 nanostructure arrays on Ni foam as electrode material for high areal-capacitance supercapacitor. J Solid State Electrochem 28, 445–461 (2024). https://doi.org/10.1007/s10008-023-05692-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05692-7

Keywords

Navigation