Skip to main content
Log in

Light-emitting bipolar electrochemistry: a straightforward way to illustrate thermodynamic aspects to students

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Thermodynamics is one of the most fascinating parts of physical chemistry, involved in different natural phenomena. In particular, the spontaneity or non-spontaneity of a chemical reaction is directly linked to fundamental thermodynamic parameters such as the Gibbs free energy change. Commonly this can be easily correlated with the electric work produced or required during an electrochemical reaction. In this context, the direct visualization of the electromotive force facilitates the student’s understanding of the fundamental concepts behind the spontaneity of coupled reactions. Herein, we take advantage of the concepts of endogenous and exogenous bipolar electrochemistry to develop an easy and straightforward approach for the introduction of the thermodynamic concept of spontaneity to undergraduate students. In such a wireless electrochemical approach, the chemical information of two coupled reactions is encoded by the light emission of a light-emitting diode employed as bipolar electrode. This results in a direct optical readout of thermodynamic information of the involved redox reactions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2

Similar content being viewed by others

References

  1. Ochs RS (1996) Thermodynamics and spontaneity. J Chem Educ 73:952–954. https://doi.org/10.1021/ed073p952

    Article  CAS  Google Scholar 

  2. da Silva RL, de Andrade J, Gasparotto LHS (2018) Electromotive force versus electrical potential difference: approaching (but not yet at) equilibrium. J Chem Educ 95:1811–1815. https://doi.org/10.1021/acs.jchemed.8b00249

    Article  CAS  Google Scholar 

  3. Kuhn A (2020) To be, or not to be…Electrochemist? J Solid State Electrochem 24:2113–2114. https://doi.org/10.1007/s10008-020-04650-x

    Article  CAS  Google Scholar 

  4. Fosdick SE, Knust KN, Scida K, Crooks RM (2013) Bipolar electrochemistry Angew Chem Int Ed 52:10438–10456. https://doi.org/10.1002/anie.201300947

    Article  CAS  Google Scholar 

  5. Koefoed L, Pedersen SU, Daasbjerg K (2017) Bipolar electrochemistry-a wireless approach for electrode reactions. Curr Opin Electrochem 2:13–17. https://doi.org/10.1016/j.coelec.2017.02.001

    Article  CAS  Google Scholar 

  6. Bouffier L, Zigah D, Sojic N, Kuhn A (2021) In Bard AJ, Stratmann M (ed) Encyclopedia of Electrochemistry, Wiley. https://doi.org/10.1002/9783527610426.bard030112

  7. Rahn KL, Anand RK (2021) Recent advancements in bipolar electrochemical methods of analysis. Anal Chem 93:103–123. https://doi.org/10.1021/acs.analchem.0c04524

    Article  CAS  PubMed  Google Scholar 

  8. Shida N, Zhou Y, Inagi S (2019) Bipolar electrochemistry: a powerful tool for electrifying functional material synthesis. Acc Chem Res 52:2598–2608. https://doi.org/10.1021/acs.accounts.9b00337

    Article  CAS  PubMed  Google Scholar 

  9. Zhao Y, Descamps J, Le Corre B, Leger Y, Kuhn A, Sojic N, Loget G (2022) Wireless anti-stokes photoinduced electrochemiluminescence at closed semiconducting bipolar electrodes. J Phys Chem Lett 13:5538–5544. https://doi.org/10.1021/acs.jpclett.2c01512

    Article  CAS  PubMed  Google Scholar 

  10. Zhan W, Alvarez J, Crooks RM (2002) Electrochemical sensing in microfluidic systems using electrogenerated chemiluminescence as a photonic reporter of redox reactions. J Am Chem Soc 124:13265–13270. https://doi.org/10.1021/ja020907s

    Article  CAS  PubMed  Google Scholar 

  11. Xing H, Zhang X, Zhai Q, Li J, Wang E (2017) Bipolar electrode based reversible fluorescence switch using Prussian blue/Au nanoclusters nanocomposite film. Anal Chem 89:3867–3872. https://doi.org/10.1021/acs.analchem.7b00246

    Article  CAS  PubMed  Google Scholar 

  12. Qin X, Gao J, Jin HJ, Li ZQ, Xia XH (2023) Closed bipolar electrode array for optical reporting reaction-coupled electrochemical sensing and imaging. Chem Eur J 29:e2022026. https://doi.org/10.1002/chem.202202687

  13. Liu Y, Zhang N, Pan JB, Song J, Zhao W, Chen HY, Xu JJ (2022) Bipolar electrode array for multiplexed detection of prostate cancer biomarkers. Anal Chem 94:3005–3012. https://doi.org/10.1021/acs.analchem.1c05383

    Article  CAS  PubMed  Google Scholar 

  14. Hsueh AJ, Mutalib NAA, Shirato Y, Suzuki H (2022) Bipolar electrode arrays for chemical imaging and multiplexed sensing. ACS Omega 7:20298–20305. https://doi.org/10.1021/acsomega.2c02298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Villani E, Inagi S (2021) Mapping the distribution of potential gradient in bipolar electrochemical systems through luminol electrochemiluminescence imaging. Anal Chem 93:8152–8160. https://doi.org/10.1021/acs.analchem.0c05397

    Article  CAS  PubMed  Google Scholar 

  16. Borchers JS, Riusech O, Rasmussen E, Anand RK (2019) Visual voltammogram at an array of closed bipolar electrodes in a ladder configuration. J Anal Test 3:150–159. https://doi.org/10.1007/s41664-019-00098-9

    Article  Google Scholar 

  17. Borchers JS, Campbell CR, Van Scoy SB, Clark MJ, Anand RK (2021) Redox cycling at an array of interdigitated bipolar electrodes for enhanced sensitivity in biosensing. ChemElectroChem 8:3482–3491. https://doi.org/10.1002/celc.202100523

    Article  CAS  Google Scholar 

  18. Defnet PA, Zhang B (2020) Detection of transient nanoparticle collision events using electrochemiluminescence on a closed bipolar microelectrode. ChemElectroChem 7:252–259. https://doi.org/10.1002/celc.201901734

    Article  CAS  Google Scholar 

  19. Cesin-AbouAtme T, Lopez-Almeida CG, Molina-Labastida G, Ibanez JG (2021) Light-emitting diodes as voltage generators: demonstrating the fuel cell principle with low-cost, magnetically enhanced, homemade solar electrolysis. J Chem Educ 98:3045–3049. https://doi.org/10.1021/acs.jchemed.1c00093

    Article  CAS  Google Scholar 

  20. Cheek GT (2015) Demonstrations of frequency/energy relationships using LEDs. J Chem Educ 92:1049–1052. https://doi.org/10.1021/ed5008553

    Article  ADS  CAS  Google Scholar 

  21. Salinas G, Pavel IA, Sojic N, Kuhn A (2020) Electrochemistry-based light-emitting mobile systems ChemElectroChem 7:4853–4862. https://doi.org/10.1002/celc.202001104

    Article  CAS  Google Scholar 

  22. Roche J, Carrara S, Sanchez J, Lannelongue J, Loget G, Bouffier L, Fischer P, Kuhn A (2014) Wireless powering of e-swimmers Sci Rep 4:6705. https://doi.org/10.1038/srep06705

    Article  CAS  PubMed  Google Scholar 

  23. de Poulpiquet A, Sojic N, Bouffier L, Kuhn A, Zigah D (2023) Wireless electronic light emission: an introduction to bipolar electrochemistry. J Chem Educ 100:767–773. https://doi.org/10.1021/acs.jchemed.2c00573

    Article  CAS  Google Scholar 

  24. Salinas G, Beladi-Mousavi SM, Gerasimova L, Bouffier L, Kuhn A (2022) Wireless imaging of transient redox activity based on bipolar light-emitting electrode arrays. Anal Chem 94:14317–14321. https://doi.org/10.1021/acs.analchem.2c02872

    Article  CAS  PubMed  Google Scholar 

  25. Gupta B, Suchomski P, Melvin AA, Linfield S, Opallo M, Nogala W (2022) Optical readout of moisture in sand employing bipolar electrochemistry. Electrochem Commun 140:107329. https://doi.org/10.1016/j.elecom.2022.107329

  26. Zhai J, Yang L, Du X, Xie X (2018) Electrochemical-to-optical signal transduction for ion-selective electrodes with light-emitting diodes. Anal Chem 90:12791–12795. https://doi.org/10.1021/acs.analchem.8b03213

    Article  CAS  PubMed  Google Scholar 

  27. Lau KT, Shepherd R, Diamond D, Diamond D (2006) Solid state pH sensor based on light emitting diodes (LED) as detector platform. Sensors 6:848–859. https://doi.org/10.3390/s6080648

    Article  ADS  CAS  PubMed Central  Google Scholar 

  28. Zhang X, Han Y, Li J, Zhang L, Jia X, Wang E (2014) Portable, universal, and visual ion sensing platform based on the light emitting diode-based self-referencing-ion selective field-effect transistor. Anal Chem 86:1380–1384. https://doi.org/10.1021/ac403312f

    Article  CAS  PubMed  Google Scholar 

  29. Cauteruccio S, Pelliccioli V, Grecchi S, Cirilli R, Licandro E, Arnaboldi S (2023) Bipolar electrochemical analysis of chirality in complex media through miniaturized stereoselective light-emitting systems. Chemosensors 11:131. https://doi.org/10.3390/chemosensors11020131

    Article  CAS  Google Scholar 

  30. Salinas G, Arnaboldi S, Bonetti G, Cirilli R, Benincori T, Kuhn A (2021) Hybrid light-emitting devices for the straightforward readout of chiral information. Chirality 33:875–882. https://doi.org/10.1002/chir.23370

    Article  CAS  PubMed  Google Scholar 

  31. Salinas G, Bonetti G, Cirilli R, Benincori T, Kuhn A, Arnaboldi S (2022) Wireless light-emitting device for the determination of chirality in real samples. Electrochim Acta 421:140494. https://doi.org/10.1016/j.electacta.2022.140494

  32. Zhang X, Chen C, Yin J, Han Y, Li J, Wang E (2015) Portable and visual electrochemical sensor based on the bipolar light emitting diode electrode. Anal Chem 87:4612–4616. https://doi.org/10.1021/acs.analchem.5b01018

    Article  CAS  PubMed  Google Scholar 

  33. Salinas G, Dauphin AL, Colin C, Villani E, Arbault S, Bouffier L, Kuhn A (2020) Chemo- and magnetotaxis of self-propelled light-emitting chemo-electronic swimmers. Angew Chem Int Ed 59:7508–7513. https://doi.org/10.1002/anie.201915705

    Article  CAS  Google Scholar 

  34. Pavel IA, Salinas G, Perro A, Kuhn A (2021) Autonomous chemotactic light-emitting swimmers with trajectories of increasing complexity. Adv Intell Syst 3:2000217. https://doi.org/10.1002/aisy.202000217

    Article  Google Scholar 

  35. Pyun SI (2020) Thermodynamic and electro-kinetic analyses of direct electron transfer (DET) and mediator-involved electron transfer (MET) with the help of a redox electron mediator. J Solid State Electrochem 24:2685–2693. https://doi.org/10.1007/s10008-020-04780-2

    Article  CAS  Google Scholar 

  36. L-53HD Bright Red T-1 3/4 (5mm) Solid State Lamp specifications. https://docs.rs-online.com/824c/0900766b8151e40a.pdf

  37. Sreenivasulu B, Subramaniam R (2012) University students’ understanding of chemical thermodynamics. Int J Sci Educ 35:601–635. https://doi.org/10.1080/09500693.2012.683460

    Article  Google Scholar 

  38. Nagel ML, Lindsey BA (2015) Student use of energy concepts from physics in chemistry courses. Chem Educ Res Pract 16:67–81. https://doi.org/10.1039/C4RP00184B

    Article  Google Scholar 

Download references

Funding

The work has been funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement n° 741251, ERC Advanced grant ELECTRA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kuhn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salinas, G., Bouffier, L., Sojic, N. et al. Light-emitting bipolar electrochemistry: a straightforward way to illustrate thermodynamic aspects to students. J Solid State Electrochem 28, 1225–1231 (2024). https://doi.org/10.1007/s10008-023-05690-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05690-9

Keywords

Navigation