Skip to main content
Log in

Electrochemical performance of hybrid spinel ferrite/carbon (NiFe2O4/C) nanocomposite derived from metal organic frameworks (MOF) as electrode material for supercapacitor application

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Ferrite/carbon (NiFe2O4/C) nanocomposite derived from metal–organic frameworks (MOF) has been evaluated as electrode material for supercapacitors. The ferrite/carbon hybrid has synthesized via one-step solvothermal method followed by heat treatment. The thermal treatment of the MOF has been conducted under different environments (N2 and air) at various temperatures, resulting in the formation of a porous diamond-shaped ferrite/carbon nanocomposite. Notably, the material subjected to pyrolysis at 500 °C in an N2 environment exhibits remarkable enhancements in its properties, showcasing the highest specific capacitance of 85.5 F g−1 at a current density of 0.25 A g−1. This excellent specific capacitance is attributed to surface redox reactions that take place due to the material’s large active surface area. Asymmetric supercapacitor composed of NF500 and activated carbon has shown a high energy density of 69.2 Wh kg−1 at a power density of 180.07 W kg−1. These outstanding electrochemical properties make the synthesized hybrid material a highly promising candidate for various energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Raza W, Nabi G, Shahzad A et al (2021) Electrochemical performance of lanthanum cerium ferrite nanoparticles for supercapacitor applications. J Mater Sci Mater Electron 32:7443–7454. https://doi.org/10.1007/s10854-021-05457-w

    Article  CAS  Google Scholar 

  2. Zou T, Qi WJ, Liu XS et al (2020) Improvement of the electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material by Al2O3 surface coating. J Electroanal Chem 859:113845. https://doi.org/10.1016/j.jelechem.2020.113845

    Article  CAS  Google Scholar 

  3. Nabi G, Riaz KN, Nazir M et al (2020) Cogent synergic effect of TiS2/g-C3N4 composite with enhanced electrochemical performance for supercapacitor. Ceram Int 46:27601–27607. https://doi.org/10.1016/j.ceramint.2020.07.254

    Article  CAS  Google Scholar 

  4. Li S, Pan J, Li F et al (2020) Bimetallic FeNi-MIL-88-derived NiFe2O4@Ni-Mn LDH composite electrode material for a high performance asymmetric supercapacitor. Dalt Trans 49:10203–10211. https://doi.org/10.1039/d0dt00251h

    Article  CAS  Google Scholar 

  5. Ji D, Zhou H, Zhang J et al (2016) Facile synthesis of a metal-organic framework-derived Mn2O3 nanowire coated three-dimensional graphene network for high-performance free-standing supercapacitor electrodes. J Mater Chem A 4:8283–8290. https://doi.org/10.1039/c6ta01377e

    Article  CAS  Google Scholar 

  6. Young C, Kim J, Kaneti YV, Yamauchi Y (2018) One-step synthetic strategy of hybrid materials from bimetallic metal-organic frameworks for supercapacitor applications. ACS Appl Energy Mater 1:2007–2015. https://doi.org/10.1021/acsaem.8b00103

    Article  CAS  Google Scholar 

  7. Li W, Xu K, An L et al (2014) Effect of temperature on the performance of ultrafine MnO2 nanobelt supercapacitors. J Mater Chem A 2:1443–1447. https://doi.org/10.1039/c3ta14182a

    Article  CAS  Google Scholar 

  8. Jin H, Yuan D, Zhu S et al (2018) Ni-Co layered double hydroxide on carbon nanorods and graphene nanoribbons derived from MOFs for supercapacitors. Dalt Trans 47:8706–8715. https://doi.org/10.1039/c8dt01882k

    Article  CAS  Google Scholar 

  9. Hou S, Xu X, Wang M et al (2017) Carbon-incorporated Janus-type Ni2P/Ni hollow spheres for high performance hybrid supercapacitors. J Mater Chem A 5:19054–19061. https://doi.org/10.1039/c7ta04720g

    Article  CAS  Google Scholar 

  10. Salunkhe RR, Kaneti YV, Kim J et al (2016) Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc Chem Res 49:2796–2806. https://doi.org/10.1021/acs.accounts.6b00460

    Article  CAS  PubMed  Google Scholar 

  11. Li GC, Liu PF, Liu R et al (2016) MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors. Dalt Trans 45:13311–13316. https://doi.org/10.1039/c6dt01791f

    Article  CAS  Google Scholar 

  12. Wang K, Bi R, Huang M et al (2020) Porous cobalt metal-organic frameworks as active elements in battery-supercapacitor hybrid devices. Inorg Chem 59:6808–6814. https://doi.org/10.1021/acs.inorgchem.0c00060

    Article  CAS  PubMed  Google Scholar 

  13. Wu Z, Xie J, Xu ZJ et al (2019) Recent progress in metal-organic polymers as promising electrodes for lithium/sodium rechargeable batteries. J Mater Chem A 7:4259–4290. https://doi.org/10.1039/c8ta11994e

    Article  CAS  Google Scholar 

  14. Guan BY, Yu XY, Bin WuH, Lou XWD (2017) Complex nanostructures from materials based on metal–organic frameworks for electrochemical energy storage and conversion. Adv Mater 29:1–20. https://doi.org/10.1002/adma.201703614

    Article  CAS  Google Scholar 

  15. Xie XC, Huang KJ, Wu X (2018) Metal-organic framework derived hollow materials for electrochemical energy storage. J Mater Chem A 6:6754–6771. https://doi.org/10.1039/c8ta00612a

    Article  CAS  Google Scholar 

  16. Guo D, Yang M, Zhang L et al (2019) Cr2O3 nanosheet/carbon cloth anode with strong interaction and fast charge transfer for pseudocapacitive energy storage in lithium-ion batteries. RSC Adv 9:33446–33453. https://doi.org/10.1039/c9ra07465a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang KW, Shen WJ (2020) Metal-organic framework-derived manganese ferrite nanocubes for efficient hydrogen peroxide sensing. Mater Lett 277:128284. https://doi.org/10.1016/j.matlet.2020.128284

    Article  CAS  Google Scholar 

  18. Sun L, Hendon CH, Park SS et al (2017) Is iron unique in promoting electrical conductivity in MOFs? Chem Sci 8:4450–4457. https://doi.org/10.1039/c7sc00647k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang L, Shi D, Liu T et al (2019) Nickel-based materials for supercapacitors. Mater Today 25:35–65. https://doi.org/10.1016/j.mattod.2018.11.002

    Article  CAS  Google Scholar 

  20. Feng L, Zhu Y, Ding H, Ni C (2014) Recent progress in nickel based materials for high performance pseudocapacitor electrodes. J Power Sources 267:430–444. https://doi.org/10.1016/j.jpowsour.2014.05.092

    Article  CAS  Google Scholar 

  21. Gao X, Bi J, Wang W et al (2020) Morphology-controllable synthesis of NiFe2O4 growing on graphene nanosheets as advanced electrode material for high performance supercapacitors. J Alloys Compd 826:154088. https://doi.org/10.1016/j.jallcom.2020.154088

    Article  CAS  Google Scholar 

  22. Bandgar SB, Vadiyar MM, Ling YC et al (2018) Metal precursor dependent synthesis of NiFe2O4 thin films for high-performance flexible symmetric supercapacitor. ACS Appl Energy Mater 1:638–648. https://doi.org/10.1021/acsaem.7b00163

    Article  CAS  Google Scholar 

  23. Zhang Z, Liu Y, Yao G et al (2013) Synthesis and characterization of NiFe2O4 nanoparticles via solid-state reaction. Int J Appl Ceram Technol 10:142–149. https://doi.org/10.1111/j.1744-7402.2011.02719.x

    Article  CAS  Google Scholar 

  24. Kavas H, Kasapoğlu N, Baykal A, Köseoğlu Y (2009) Characterization of NiFe 2 O 4 nanoparticles synthesized by various methods. Chem Pap 63:450–455. https://doi.org/10.2478/s11696-009-0034-6

    Article  CAS  Google Scholar 

  25. Bakhshi H, Azari MM, Shokuhfar A (2020) A facile approach for obtaining NiFe 2O4 / C nanocomposites and their magnetic properties assessment. Diamond and Related Materials 110:108159. https://doi.org/10.1016/j.diamond.2020.108159

  26. Tian Z, Wang X, Li B et al (2019) High rate capability electrode constructed by anchoring CuCo 2 S 4 on graphene aerogel skeleton toward quasi-solid-state supercapacitor. Electrochim Acta 298:321–329. https://doi.org/10.1016/j.electacta.2018.12.103

    Article  CAS  Google Scholar 

  27. Park CM, Kim YM, Kim KH et al (2019) Potential utility of graphene-based nano spinel ferrites as adsorbent and photocatalyst for removing organic/inorganic contaminants from aqueous solutions: a mini review. Chemosphere 221:392–402. https://doi.org/10.1016/j.chemosphere.2019.01.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Soam A, Kumar R, Thatoi D, Singh M (2020) Electrochemical performance and working voltage optimization of nickel ferrite/graphene composite based supercapacitor. J Inorg Organomet Polym Mater 30:3325–3331. https://doi.org/10.1007/s10904-020-01540-7

    Article  CAS  Google Scholar 

  29. Sheng H, Wei M, D’Aloia A, Wu G (2016) Heteroatom polymer-derived 3D high-surface-area and mesoporous graphene sheet-like carbon for supercapacitors. ACS Appl Mater Interfaces 8:30212–30224. https://doi.org/10.1021/acsami.6b10099

    Article  CAS  PubMed  Google Scholar 

  30. Rozlívková Z, Trchová M, Exnerová M, Stejskal J (2011) The carbonization of granular polyaniline to produce nitrogen-containing carbon. Synth Met 161:1122–1129. https://doi.org/10.1016/j.synthmet.2011.03.034

    Article  CAS  Google Scholar 

  31. Saleh Ghadimi L, Arsalani N, Tabrizi AG et al (2018) Novel nanocomposite of MnFe2O4 and nitrogen-doped carbon from polyaniline carbonization as electrode material for symmetric ultra-stable supercapacitor. Electrochim Acta 282:116–127. https://doi.org/10.1016/j.electacta.2018.05.160

    Article  CAS  Google Scholar 

  32. Shrivastav V, Sundriyal S, Tiwari UK et al (2021) Metal-organic framework derived zirconium oxide/carbon composite as an improved supercapacitor electrode. Energy 235:121351. https://doi.org/10.1016/j.energy.2021.121351

    Article  CAS  Google Scholar 

  33. Yang J, Xiong P, Zheng C et al (2014) Metal-organic frameworks: a new promising class of materials for a high performance supercapacitor electrode. J Mater Chem A 2:16640–16644. https://doi.org/10.1039/c4ta04140b

    Article  CAS  Google Scholar 

  34. Yang J, Zheng C, Xiong P et al (2014) Zn-doped Ni-MOF material with a high supercapacitive performance. J Mater Chem A 2:19005–19010. https://doi.org/10.1039/c4ta04346d

    Article  CAS  Google Scholar 

  35. Xiang Z, Song Y, Xiong J et al (2019) Enhanced electromagnetic wave absorption of nanoporous Fe3O4 @ carbon composites derived from metal-organic frameworks. Carbon N Y 142:20–31. https://doi.org/10.1016/j.carbon.2018.10.014

    Article  CAS  Google Scholar 

  36. Feng J, Hou X, Chen T et al (2015) Synthesis of NiFe2O4 nanowires with NiO nanosheet as precursor via a topochemical solid state method. Chem Res Chinese Univ 31:885–889. https://doi.org/10.1007/s40242-015-5132-0

    Article  CAS  Google Scholar 

  37. Singh G, Chandra S (2020) Nano-flowered manganese doped ferrite@PANI composite as energy storage electrode material for supercapacitors. J Electroanal Chem 874:114491. https://doi.org/10.1016/j.jelechem.2020.114491

    Article  CAS  Google Scholar 

  38. Mesbah A, Rabu P, Sibille R et al (2014) From hydrated Ni 3 ( OH ) 2 ( C 8 H 4 O 4 ) 2 ( H 2 O ) 4 to anhydrous Ni 2 ( OH ) 2 ( C 8 H 4 O 4 ): impact of structural transformations on magnetic properties. Inorg Chem 53(2):872–881. https://doi.org/10.1021/ic402106v

  39. Sun Q, Liu M, Li K et al (2017) Synthesis of Fe/M (M = Mn, Co, Ni) bimetallic metal organic frameworks and their catalytic activity for phenol degradation under mild conditions

  40. Kazemi SH, Hosseinzadeh B, Kazemi H et al (2018) Facile synthesis of mixed metal-organic frameworks: electrode materials for supercapacitors with excellent areal capacitance and operational stability. ACS Appl Mater Interfaces 10:23063–23073. https://doi.org/10.1021/acsami.8b04502

    Article  CAS  PubMed  Google Scholar 

  41. Ramadevi P, Sangeetha A, Kousi F, Shanmugavadivu R (2019) Structural and electrochemical investigation on pure and aluminium doped nickel ferrite nanoparticles for supercapacitor application. Mater Today Proc 33:2116–2121. https://doi.org/10.1016/j.matpr.2020.02.888

    Article  CAS  Google Scholar 

  42. Mordina B, Kumar R, Neeraj NS et al (2020) Binder free high performance hybrid supercapacitor device based on nickel ferrite nanoparticles. J Energy Storage 31:101677. https://doi.org/10.1016/j.est.2020.101677

    Article  Google Scholar 

  43. Kumaraguru S, Yesuraj J, Mohan S (2020) Reduced graphene oxide-wrapped micro-rod like Ni/Co organic-inorganic hybrid nanocomposite as an electrode material for high-performance supercapacitor. Compos Part B Eng 185:107767. https://doi.org/10.1016/j.compositesb.2020.107767

    Article  CAS  Google Scholar 

  44. Askari MB, Salarizadeh P (2020) Binary nickel ferrite oxide (NiFe2O4) nanoparticles coated on reduced graphene oxide as stable and high-performance asymmetric supercapacitor electrode material. Int J Hydrogen Energy 45:27482–27491. https://doi.org/10.1016/j.ijhydene.2020.07.063

    Article  CAS  Google Scholar 

  45. Dennison JR, Holtz M (1996) Raman spectroscopy of carbon materials. Spectrosc (Santa Monica) 11:38–46

    CAS  Google Scholar 

  46. Casiraghi C, Pisana S, Novoselov KS et al (2007) Raman fingerprint of charged impurities in graphene. Appl Phys Lett 91:2007–2009. https://doi.org/10.1063/1.2818692

    Article  CAS  Google Scholar 

  47. Li W, Zhang W, Li T et al (2019) An important factor affecting the supercapacitive properties of hydrogenated TiO2 nanotube arrays: crystal structure. Nanoscale Res Lett. https://doi.org/10.1186/s11671-019-3047-2

    Article  PubMed  PubMed Central  Google Scholar 

  48. Thommes M, Kaneko K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  49. Gupta M, Tyagi S, Kumari N (2022) Electrochemical evaluation of highly stable Mn ferrite/PEDOT/rGO ternary nanocomposite for supercapacitor electrodes. J Mater Sci Mater Electron 33:7838–7852. https://doi.org/10.1007/s10854-022-07935-1

    Article  CAS  Google Scholar 

  50. Xiang Z, Shi Y, Zhu X et al (2021) Metal-organic frameworks derived porous hollow Co/C microcubes with improved synergistic effect for high-efficiency microwave absorption. J Alloys Compd 887:161413. https://doi.org/10.1016/j.jallcom.2021.161413

    Article  CAS  Google Scholar 

  51. Salunkhe RR, Tang J, Kamachi Y et al (2015) Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework. ACS Nano 9:6288–6296. https://doi.org/10.1021/acsnano.5b01790

    Article  CAS  PubMed  Google Scholar 

  52. Zou F, Hu X, Li Z et al (2014) MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv Mater 26:6622–6628. https://doi.org/10.1002/adma.201402322

    Article  CAS  PubMed  Google Scholar 

  53. Xu X, Cao R, Jeong S, Cho J (2012) Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett 12:4988–4991. https://doi.org/10.1021/nl302618s

  54. Ji Y, Ma Y, Liu R et al (2019) Modular development of metal oxide/carbon composites for electrochemical energy conversion and storage. J Mater Chem A 7:13096–13102. https://doi.org/10.1039/c9ta03498f

    Article  CAS  Google Scholar 

  55. Samuel E, Aldalbahi A, El-Newehy M et al (2021) Nickel ferrite beehive-like nanosheets for binder-free and high-energy-storage supercapacitor electrodes. J Alloys Compd 852:156929. https://doi.org/10.1016/j.jallcom.2020.156929

    Article  CAS  Google Scholar 

  56. Liu J, Zhu D, Ling T et al (2017) S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy 40:264–273. https://doi.org/10.1016/j.nanoen.2017.08.031

    Article  CAS  Google Scholar 

  57. Cai YZ, Cao WQ, Zhang YL et al (2019) Tailoring rGO-NiFe2O4 hybrids to tune transport of electrons and ions for supercapacitor electrodes. J Alloys Compd 811:152011. https://doi.org/10.1016/j.jallcom.2019.152011

    Article  CAS  Google Scholar 

  58. Wang Q, Chen D, Zhang D (2015) Electrospun porous CuCo2O4 nanowire network electrode for asymmetric supercapacitors. RSC Adv 5:96448–96454. https://doi.org/10.1039/c5ra21170k

    Article  CAS  Google Scholar 

  59. Sidhu NK, Rastogi AC (2014) Vertically aligned ZnO nanorod core-polypyrrole conducting polymer sheath and nanotube arrays for electrochemical supercapacitor energy storage. Nanoscale Res Lett 9:1–16. https://doi.org/10.1186/1556-276X-9-453

    Article  CAS  Google Scholar 

  60. Wang K, Wang Z, Wang X et al (2018) Flexible long-chain-linker constructed Ni-based metal-organic frameworks with 1D helical channel and their pseudo-capacitor behavior studies. J Power Sources 377:44–51. https://doi.org/10.1016/j.jpowsour.2017.11.087

    Article  CAS  Google Scholar 

  61. Sivakumar M, Muthukutty B, Panomsuwan G et al (2022) Facile synthesis of NiFe2O4 nanoparticle with carbon nanotube composite electrodes for high-performance asymmetric supercapacitor. Colloids Surfaces A Physicochem Eng Asp 648:129188. https://doi.org/10.1016/J.COLSURFA.2022.129188

    Article  CAS  Google Scholar 

  62. Toghan A, Khairy M, Kamar EM, Mousa MA (2022) Effect of particle size and morphological structure on the physical properties of NiFe2O4 for supercapacitor application. J Mater Res Technol 19:3521–3535. https://doi.org/10.1016/J.JMRT.2022.06.095

    Article  CAS  Google Scholar 

  63. Arun T, Kavinkumar T, Udayabhaskar R et al (2021) NiFe2O4 nanospheres with size-tunable magnetic and electrochemical properties for superior supercapacitor electrode performance. Electrochim Acta 399:139346. https://doi.org/10.1016/J.ELECTACTA.2021.139346

    Article  CAS  Google Scholar 

  64. Gao X, Bi J, Gao J et al (2022) Partial sulfur doping induced lattice expansion of NiFe2O4 with enhanced electrochemical capacity for supercapacitor application. Electrochim Acta 426:140739. https://doi.org/10.1016/J.ELECTACTA.2022.140739

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to CSIR-IMTECH for providing a few characterization facilities. The authors are thankful to the Director, CSIR-CSIO Chandigarh for providing full facilities in the lab.

Funding

The author Mahak Gupta received research grant from DST-Inspire (IF-180134).

Author information

Authors and Affiliations

Authors

Contributions

Mahak Gupta: conceptualization, methodology, formal analysis, investigation, writing-original draft. Sachin Tyagi: validation, review and editing. Neelam Kumari: supervision, review and editing.

Corresponding author

Correspondence to Neelam Kumari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, M., Tyagi, S. & Kumari, N. Electrochemical performance of hybrid spinel ferrite/carbon (NiFe2O4/C) nanocomposite derived from metal organic frameworks (MOF) as electrode material for supercapacitor application. J Solid State Electrochem 28, 169–180 (2024). https://doi.org/10.1007/s10008-023-05665-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05665-w

Keywords

Navigation