Skip to main content
Log in

Facile synthesis of Sm vanadate nanowires and sensitive detection of cobalt ions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A facile hydrothermal approach was applied for synthesizing single crystalline Sm vanadate nanowires without any surfactants, and the formation mechanism of the Sm vanadate nanowires was analyzed in detail. The Sm vanadate nanowires possess a tetragonal SmVO4 phase, smooth surface, length of tens of micrometers, and a diameter of 30–100 nm, respectively. The Sm vanadate nanowires can be applied as the electrode materials with excellent electron transfer interface, exhibiting good electrocatalytic performance for Co2+ detection by square wave voltammetry (SWV) technique. A well-defined potential at + 0.60 V exists at the Sm vanadate nanowire–modified electrode in KCl electrolyte with 1 mM Co2+. Electrolyte pH value, deposition time, deposition potential, and standing time are optimized to be pH = 6, 90 s, − 1.5 V, and 60 s, respectively. Sm vanadate nanowire–modified electrode indicates a linear detection range of 0.01–1000 μM, detection limit of 0.23 nM, good stability, reproducibility, and selectivity for Co2+ detection. The Sm vanadate nanowires provide promising electrode materials and are applicable for the detection of Co2+ in real water environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pei LS, Su JP, Yang HL, Wu Y, Du Y, Zhu YM (2022) A novel covalent-organic framework for highly sensitive detection of Cd2+, Pb2+, Cu2+ and Hg2+. Micropor Mesopor Mat 333:111742

    Article  CAS  Google Scholar 

  2. Wang R, Fan XW, Li YZ (2022) Efficient removal of a low concentration of Pb (II), Fe (III) and Cu (II) from simulated drinking water by co-immobilization between low-dosages of metal-resistant/adapted fungus Penicillium janthinillum and graphene oxide and activated carbon. Chemosphere 86:31591

    Google Scholar 

  3. Esfandiar N, Suri R, McKenzie ER (2022) Competitive sorption of Cd, Cr, Cu, Ni, Pb and Zn from stormwater runoff by five low-cost sorbents; effects of co-contaminants, humic acid, salinity and pH. J Hazard Mater 423:12693

    Article  Google Scholar 

  4. Colvin RA, Bush AI, Volitakis I, Fontaine CP, Thomas D, Kikuchi K, Holmes WR (2008) Insights into Zn2+ homeostasis in neurons from experimental and modeling studies. Am J Physiol: Cell Physiol 294:C726–C742

    Article  CAS  PubMed  Google Scholar 

  5. Devadoss V, Noel M, Jayaraman K, Basha CA (2003) Electrochemical behaviour of Mn3+/Mn2+, Co3+/Co2+ and Ce4+/Ce4+ redox mediators in methanesulfonic acid. J Appl Electrochem 33:319–323

    Article  CAS  Google Scholar 

  6. He W, Xie YB, Yin Q, Zhao ZX, Shi L, Wang HQ (2022) A new “on-off-on” g-C3N4 nanosheets fluorescent sensor for 5-Br-PADAP and Co2+ under acidic conditions. New J Chem 46:1960–1971

    Article  CAS  Google Scholar 

  7. Yamini Y, Faraji M, Shariati S, Hassani R, Ghambarian M (2008) On-line metals preconcentration and simultaneous determination using cloud point extraction and inductively coupled plasma optical emission spectrometry in water samples. Anal Chim Acta 612:144–151

    Article  CAS  PubMed  Google Scholar 

  8. Smirnova SV, Ilin DV, Pletnev IV (2021) Extraction and ICP-OES determination of heavy metals using tetrabutylammonium bromide aqueous biphasic system and oleophilic collector. Talanta 221:121485

    Article  CAS  PubMed  Google Scholar 

  9. Qiu J, Jiang S, Lin B, Guo H, Yang F (2019) An unusual AIE fluorescent sensor for sequentially detecting Co2+-Hg2+-Cu2+ based on diphenylacrylonitrile Schiff-base derivative. Dyes Pigments 170:107590

    Article  CAS  Google Scholar 

  10. Singh G, Devi A, Kaur JP, Saini A (2022) Chalcone appended organosilanes and their silica nanoparticles based UV-vis and fluorometric probes for Co2+ ions detection. Inorg Chim Acta 535:120827

    Article  CAS  Google Scholar 

  11. Huang MQ, Tong CL (2022) Silicon nanoparticles/gold nanoparticles composite as a fluorescence probe for sensitive and selective detection of Co2+ and vitamin B12 based on the selective aggregation and inner filter effect. Spectrochim Acta A 268:120706

    Article  CAS  Google Scholar 

  12. Celestina JJ, Tharmaraj P, Jeevika A, Sheela CD (2020) Fabrication of triazine based colorimetric and electrochemical sensor for the quantification of Co2+ ion. Microchem J 155:104692

    Article  CAS  Google Scholar 

  13. Jellesen MS, Olsen CB, Ruff S, Spiewak R, Hamann D, Hamann CR, Thyssen JP (2018) Electrochemical screening spot test method for detection of nickel and cobalt ion release from metal surfaces. Dermatitis 29:187–192

    Article  CAS  PubMed  Google Scholar 

  14. Yadav P, Gond S, Shekher A, Gupta SC, Singh UP, Singh VP (2022) A multifunmctional basic pH indicator probe for distinguishable detection of Co2+, Cu2+ and Zn2+ with its utility in mitotracking and monitoring cytoplasmic viscosity in apoptotic cells. Dalton Trans 51:6927–6935

    Article  CAS  PubMed  Google Scholar 

  15. Zhang ZY, Chen ZP, Pan DW, Chen L (2015) Fenton-like reaction-mediated etching of gold nanorods for visual detection of Co2+. Langmuir 1:643–650

    Article  Google Scholar 

  16. Vashisht D, Kaur K, Jukaria R, Vashisht A, Sharma S, Mehta SK (2019) Colorimetric chemosensor based on coumarin skeleton for selective naked eye detection of cobalt (II) ion in near aqueous medium. Sens Actuat B 280:219–226

    Article  CAS  Google Scholar 

  17. Li WT, Jiang NJ, Zhang LM, Chen YQ, Gao J, Zhang J, He JX (2022) Facile synthesis of aminated graphene quantum dots for promising and selective detection of cobalt and copper ions in aqueous media. Molecules 27:7844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Naskar B, Mukhopadhyay CD, Goswami S (2022) A new diformyl phenol based chemosensor selectively detects Zn2+ and Co2+ in the nanomolar range in 100% aqueous medium and HCT live cells. New J Chem 46:11946–11955

    Article  CAS  Google Scholar 

  19. Bhalla P, Goel A, Tomer N, Malhotra R (2022) Multi responsive chemosensor for the determination of metal ions (Co2+, Cu2+, and Zn2+ ions). Inorg Chem Commun 136:09181

    Article  Google Scholar 

  20. Zhang X, An D, Bi ZS, Shan W, Zhu BB, Zhou L, Qiu M (2022) Ti3C2-MXene@N-doped carbon heterostructure-based electrochemical sensor for simultaneous detection of heavy metals. J Electroanal Chem 911:116239

    Article  CAS  Google Scholar 

  21. Liu XX, Yao Y, Ying YB, Ping JF (2019) Recent advances in nanomaterial-enabled screen-printed electrochemical sensors for heavy metal detection. Trends Anal Chem 115:187–202

    Article  CAS  Google Scholar 

  22. Hou X, Xu H, Zhen TY, Wu W (2020) Recent developments in three-dimensional graphene-based electrochemical sensors for food analysis. Trends Food Sci Technol 105:76–92

    Article  CAS  Google Scholar 

  23. Cardenas-Riojas AA, Calderon-Zavaleta SL, Quiroz-Aguinaga U, López EO, Ponce-Vargas M, Baena-Maoncada AM (2023) Evaluation of an electrochemical sensor based on gold nanoparticles supported on carbon nanofibers for detection of tartrazine dye. J Solid State Electrochem 27:1969–1982

    Article  CAS  Google Scholar 

  24. Leau SA, Lete C, Marin M, del Campo FJ, Diaconu I, Lupu S (2023) Electrochemical sensors based on antimony tin oxide-Prussian blue screen-printed electrode and PEDOT-Prussian blue for potassium ion detection. J Solid State Electrochem 27:1755–1766

    Article  CAS  Google Scholar 

  25. Wei Z, Gasparyan M, Liu L, Verpoort F, Hu J, Jin Z, Zhuiykov S (2023) Microwave-exfoliated 2D oligo-layer MoO3-x nanosheets with outstanding molecular adsorptivity and room-temperature gas sensitivity on ppb level. Chem Eng J 454:140076

    Article  CAS  Google Scholar 

  26. Zhu H, Wang X, Liang J, Lv H, Tong H, Ma L, Jin Z (2017) Versatile electronic skins for motion detection of joints enabled by aligned few-walled carbon nanotubes in flexible polymer composites. Adv Funct Mater 27:1606604

    Article  Google Scholar 

  27. Li L, Shi P, Hua L, An J, Gong Y, Chen R, Huang W (2018) Design of a wearable and shape-memory fibriform sensor for the detection of multimodal deformation. Nanoscale 10:118–123

    Article  CAS  Google Scholar 

  28. Sheng QL, Yu H, Zheng JB (2007) Sol–gel derived terbium hexacyanoferrate modified carbon ceramic electrode: electrochemical behavior and its electrocatalytical oxidation of ascorbic acid. J Electroanal Chem 606:39–46

    Article  CAS  Google Scholar 

  29. Chen WT (2020) Preparation, structures, photophysical properties and energy transfer mechanism of two novel samarium and thulium compounds. J Solid State Chem 285:121251

    Article  CAS  Google Scholar 

  30. Bagheri M, Hamedani NF, Mahjoub AR, Khodadadi AA, Mortazavi Y (2014) Highly sensitive and selective ethanol sensor based on Sm2O3-loaded flower-like ZnO nanostructure. Sens Actuat B 191:283–290

    Article  CAS  Google Scholar 

  31. Dong LZ, He YM, Lin HJ, Wang SS, Hu WD, Luo MF, Zhao LH (2014) Preparation, characterization and photocatalytic activity of graphene doped SmVO4 photocatalyst. Mater Lett 122:17–20

    Article  CAS  Google Scholar 

  32. Kokulnathan T, Kumar EA, Wang TJ (2020) Synthesis of two-dimensional nanosheet like samarium molybdate with abundant active sites: real-time carbendazimin analysis in environmental samples. Microchem J 158:105227

    Article  CAS  Google Scholar 

  33. He YM, Sheng TL, Chen JS, Fu RB, Hu SM, Wu XT (2009) Photodegradation of organics over a new composite catalyst V2O5/SmVO4. Catal Commun 10:1354–1357

    Article  CAS  Google Scholar 

  34. Li TT, He YM, Lin HJ, Cai J, Dong LZ, Wang XX, Weng WZ (2013) Synthesis, characterization and photocatalytic activity of visible-light plasmonic photocatalyst AgBr-SmVO4. Appl Catal B 138:95–103

    Article  Google Scholar 

  35. Alkorbi AS, Kumar KY, Prashanth MK, Parashuram L, Abate A, Alharti FA, Raghu MS (2022) Samarium vanadate affixed sulphur self doped g-C3N4 heterojunction; photocatalytic, photoelectrocatalytic hydrogen evolution and dye degradation. Int J Hydrogen Energy 47:12988–13003

    Article  CAS  Google Scholar 

  36. Chen L, Chen Y, Miao L, Gao Y, Di J (2020) Photocurrent switching effect on BiVO4 electrodes and its application in development of photoelectrochemical glucose sensor. J Solid State Electrochem 24:411–420

    Article  CAS  Google Scholar 

  37. Pei LZ, Lin N, Wei T, Liu HD, Yu HY (2015) Formation of copper vanadate nanobelts and the electrochemical behaviors for the determination of ascorbic acid. J Mater Chem A 3:2690–2700

    Article  CAS  Google Scholar 

  38. Pei LZ, Wang S, Liu HD, Pei YQ (2014) A review on ternary vanadate one-dimensional nanomaterials. Recent Pat Nanotechnol 8:142–155

    Article  CAS  PubMed  Google Scholar 

  39. Hu N, Du J, Ma YY, Cui WJ, Li YG (2021) Unravelling the role of polyoxovanadates in electrocatalytic water oxidation reaction: Active species or precursors. Appl Surf Sci 540:148306

    Article  CAS  Google Scholar 

  40. Pooja S, Divya M, Mahesh S, Pankaj R, Ahmad HB, Saini AK (2018) Fabrication of fluorine doped graphene and SmVO4 based dispersed and adsorptive photocatalyst for abatement of phenolic compounds from water and bacterial disinfection. J Cleaner Prod 203:386–399

    Article  Google Scholar 

  41. Chen J, Xu XJ, Feng L, He AJ, Chen YN (2020) One-step MOF assisted synthesis of SmVO4 nanorods for photocatalytic degradation of tetracycline under visible light. Mater Lett 276:128213

    Article  CAS  Google Scholar 

  42. Nataraj N, Chen SM (2021) Samarium vanadate nanospheres integrated carbon nanofiber composite as an efficient electrocatalyst for antituberculosis drug detection in real samples. Colloids Surf A 617:126385

    Article  CAS  Google Scholar 

  43. Zheng JH, Zhang L (2019) Designing 3D magnetic peony flower-like cobalt oxides/g-C3N4 dual Z-scheme photocatalyst for remarkably enhanced sunlight driven photocatalytic redox activity. Chem Eng J 369:947–956

    Article  CAS  Google Scholar 

  44. Deng AJ, Yu CH, Xue ZY, Huang JF, Pan HB, Pei LZ (2022) Rare metal doping of the hexahydroxy strontium stannate with enhanced photocatalytic performance for organic pollutants. J Mater Res Technol 19:1073–1089

    Article  CAS  Google Scholar 

  45. Meng JY, Zou ZG, Liu X, Zhang SC, Wen ZQ, Zhong SL (2022) VO2 nanobelts decorated with a secondary hydrothermal chemical lithiation method for long-life and high-rate Li-ion batteries. J Alloys Compd 896:162894

    Article  CAS  Google Scholar 

  46. Uwamino Y, Ishizuka Y, Yamatera H (1984) X-ray photoelectron spectroscopy of rare-earth compounds. J Electron Spectrosc Relat Phenom 34:67–78

    Article  CAS  Google Scholar 

  47. Pei LZ, Ma Y, Qiu FL, Lin FF, Fan CG, Ling XZ (2020) Synthesis of polyaniline/graphene nanocomposites and electrochemical sensing performance for formaldehyde. Curr Anal Chem 16:493–498

    Article  CAS  Google Scholar 

  48. Fang Q, Chen CS, Yang Z, Chen XA, Liu TG (2020) Synthetization and electrochemical performance of pomegranate-like ZnMn2O4 porous microspheres. J Alloys Compd 826:154074

    Article  Google Scholar 

  49. Cui L, Wu J, Ju HX (2015) Synthesis of bismuth-nanoparticle-enriched nanoporous carbon on graphene for efficient electrochemical analysis of heavy-metal ions. Chem Eur J 21:11525–11530

    Article  CAS  PubMed  Google Scholar 

  50. Huang JF, Cai ZY, Zhang Y (2023) A simple route to synthesize mixed BiPr oxide nanoparticles and polyaniline composites with enhanced L-cysteine sensing properties. J Electron Mater 52:613–627

    Article  CAS  Google Scholar 

  51. Huang JF, Tao FH, Sun ZZ, Li FY, Cai ZY, Zhang Y, Pei LZ (2022) A facile synthesis route to BiPr composite nanosheets and sensitive electrochemical detection of L-cysteine. Microchem J 182:107915

    Article  CAS  Google Scholar 

  52. Yang SL, Li G, Qu C, Wang GG, Wang D (2017) Simple synthesis of ZnO nanoparticles on N-doped reduced graphene oxide for the electrocatalytic sensing of L-cysteine. RSC Adv 7:35004–35011

    Article  CAS  Google Scholar 

  53. Huang JF, Tao FH, Li FY, Cai ZY, Zhang Y, Fan CG, Pei LZ (2022) Controllable synthesis of BiPr composite oxide nanowires electrocatalyst for sensitive L-cysteine sensing properties. Nanotechnology 33:345704

    Article  Google Scholar 

  54. Yang D, Wang L, Chen ZL, Megharaj M, Naidu R (2014) Determination of trace lead and cadmium in water samples by anodic stripping voltammetry with a nafion-ionic liquid-coated bismuth film electrode. Electroanal 26:639–647

    Article  CAS  Google Scholar 

  55. Daikhin LI, Kornyshev AA, Urbakh M (1996) Double-layer capacitance on a rough metal surface. Phys Rev E 53:6192–6199

    Article  CAS  Google Scholar 

  56. Jarzabek G, Borkowska Z (1997) On the real surface area of smooth solid electrodes. Electrochim Acta 42:2915–2918

    Article  CAS  Google Scholar 

  57. Ferreira TL, Paixão TRLC, Richter EM, Seoud OAE, Bertotti M (2007) Use of microdevices to determine the diffusion coefficient of electrochemically generated species: application to binary solvent mixtures and micellar solutions. J Phys Chem B 111:12478–12484

    Article  CAS  PubMed  Google Scholar 

  58. Torma F, Kádár M, Tóth K, Tatár E (2008) Nafion®/2, 2’-bipyridyl-modified bismuth film electrode for anodic stripping voltammetry. Anal Chim Acta 619:173–182

    Article  CAS  PubMed  Google Scholar 

  59. Zhu L, Xu LL, Huang BZ, Jia NM, Tan L, Yao SZ (2014) Simultaneous determination of Cd(II) and Pb(II) using square wave anodic stripping voltammetry at a gold nanoparticle-graphene-cysteine composite modified bismuth film electrode. Electrochim Acta 115:471–477

    Article  CAS  Google Scholar 

  60. Zhao G, Wang H, Liu G, Wang ZQ (2017) Simultaneous and sensitive detection of Cd (II) and Pb (II) using a novel bismuth film/ordered mesoporous carbon-molecular wire modified graphite carbon paste electrode. Electroanal 29:497–505

    Article  CAS  Google Scholar 

  61. Simpson A, Pandey RR, Chusuei CCC (2018) Fabrication characterization and potential applications of carbon nanoparticles in the detection of heavy metal ions in aqueous media. Carbon 127:122–130

    Article  CAS  Google Scholar 

  62. Ghaedi M, Shokrollahi A, Ahmadi F, Rajabi HR, Soylak M (2008) Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry. J Hazard Mater 150:533–540

    Article  CAS  PubMed  Google Scholar 

  63. Tsoutsi D, Guerrini L, Hermida-Ramon JM, Giannini V, Liz-Marzán LM, Wei A, Alvarez-Puebla RA (2013) Simultaneous SERS detection of copper and cobalt at ultratrace levels. Nanoscale 5:5841–5846

    Article  CAS  PubMed  Google Scholar 

  64. Leng Y, Zhang F, Zhang Y, Fu X, Weng Y, Chen L, Wu A (2012) A rapid and sensitive colorimetric assay method for Co2+ based on the modified Au nanoparticles (NPs): understanding the involved interactions from experiments and simulations. Talanta 94:271–277

    Article  CAS  PubMed  Google Scholar 

  65. Maity D, Gupta R, Gunupuru R, Srivastava DN, Paul P (2014) Calix[4]arene functionalized gold nanoparticles: application in colorimetric and electrochemical sensing of cobalt ion in organic and aqueous medium. Sens Actuat B 191:757–764

    Article  CAS  Google Scholar 

  66. Zhang Z, Zhang J, Lou T, Pan D, Chen L, Qu C, Chen Z (2012) Label-free colorimetric sensing of cobalt(II) based on inducing aggregation of thiosulfate stabilized gold nanoparticles in the presence of ethylenediamine. Analyst 137:400405

    Google Scholar 

  67. Muralikrishna S, Nagaraju DH, Balakrishna RG, Surareungchai W, Ramakrishnappa T, Shivanandareddy AB (2017) Hydrogels of polyaniline with grapheme oxide for highly sensitive electrochemical determination of lead ions. Anal Chim Acta 990:67–77

    Article  CAS  PubMed  Google Scholar 

  68. Sang S, Li D, Zhang H, Sun Y, Jian A, Zhang Q, Zhang W (2017) Facile synthesis of AgNPs on reduced graphene oxide for highly sensitive simultaneous detection of heavy metal ions. RSC Adv 7:21618–21624

    Article  CAS  Google Scholar 

  69. Zhou SF, Wang JJ, Gan L, Han XJ, Fan HL, Mei LY (2017) Individual and simultaneous electrochemical detection toward heavy metal ions based on L-cysteine modified mesoporous MnFe2O4 nanocrystal clusters. J Alloys Compd 721:492–500

    Article  CAS  Google Scholar 

  70. Mardegan A, Scopece P, Lamberti F, Meneghetti M, Moretto LM, Ugo P (2012) Electroanalysis of trace inorganic arsenic with gold nanoelectrode ensembles. Electroanal 24:798–806

    Article  CAS  Google Scholar 

Download references

Funding

The research was supported by grants from the Natural Science Foundation of Anhui Province of P. R. China (2008085ME172) and the National Scholarship Fund of China Scholarship Council (CSC) (202008340046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhai Pei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3552 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, C., Wang, X., Cong, Q. et al. Facile synthesis of Sm vanadate nanowires and sensitive detection of cobalt ions. J Solid State Electrochem 28, 61–73 (2024). https://doi.org/10.1007/s10008-023-05659-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05659-8

Keywords

Navigation