Skip to main content
Log in

Hydrothermal synthesis of flower-like NiCo2-LDH/MXene-Ti3C2 composites for high-performance capacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, NiCo2-LDH/Ti3C2 composites have been grown directly on Ni foam using a one-step hydrothermal synthesis method. The combination of NiCo2-LDH nanosheets and MXene (Ti3C2) shows cooperative effect for supercapacitors with expressively enhanced electrochemical performances. The NiCo2-LDH/Ti3C2 electrode shows a relatively high areal capacity of 4.39 C cm−2 at 5 mA cm−2, even at 20 mA cm−2; the areal capacity retention is 77.5% (3.41 C cm−2). In addition, a solid-state hybrid supercapacitor of NiCo2-LDH/Ti3C2//AC is assembled by using the material as the positive electrode. The device presents a high energy density of 6.08 mW h cm−3 at a power density of 202.50 mW cm−3 and retains 81.63% of its initial capacity after 10,000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Luo M, Zhao Z, Zhang Y, Sun Y, Xing Y, Lv F, Yang Y, Zhang X, Hwang S, Qin Y, Ma J, Lin F, Su D, Lu G, Guo S (2019) PdMo bimetallene for oxygen reduction catalysis. Nature 574:81

    Article  CAS  PubMed  Google Scholar 

  2. Liu G, Yang Y, Lu X, Qi F, Liang Y, Trukhanov A, Wu Y, Sun Z, Lu X (2022) Fully active bimetallic phosphide Zn0.5Ge0.5P: A novel high performance anode for Na-ion batteries coupled with diglyme based electrolyte. ACS Appl Mater Interfaces 14:31803–31813

  3. Sivanantham A, Ganesan P, Shanmugam S (2016) Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv Funct Mater 26:4661

    Article  CAS  Google Scholar 

  4. Zhang G, Lou XWD (2013) General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv Mater 25:976–979

    Article  CAS  PubMed  Google Scholar 

  5. Zhao Y, He JF, Dai MZ, Zhao DP, Wu X, Liu BD (2020) Emerging CoMn-LDH@MnO2 electrode materials assembled using nanosheets for flexible and foldable energy storage devices. J Energy Chem 45:67

    Article  Google Scholar 

  6. Zhao D, Dai M, Liu H, Xiao L, Wu X, Xia H (2019) Constructing high performance hybrid battery and electrocatalyst by heterostructured NiCo2O4@NiWS nanosheets. Cryst Growth Des 19:1921

    Article  CAS  Google Scholar 

  7. Liu G, Wang N, Qi F, Lu X, Liang Y, Sun Z (2023) Novel Ni–Ge–P anodes for lithium-ion batteries with enhanced reversibility and reduced redox potential. Inorg Chem Front 10:699

    Article  CAS  Google Scholar 

  8. Chen J, Xu J, Zhou S, Zhao N, Wong CP (2016) Nitrogen-doped hierarchically porous carbon foam: a free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy 25:193

    Article  CAS  Google Scholar 

  9. Zheng L, Xu Y, Jin D, Xie Y (2010) Well-aligned molybdenum oxide nanorods on metal substrates: solution-based synthesis and their electrochemical capacitor application. J Mater Chem 20:7135

    Article  CAS  Google Scholar 

  10. Wang T, Le QJ, Guo XL, Huang M, Liu XY, Dong F, Zhang JT, Zhang YX (2019) Preparation of porous graphene@Mn3O4 and its application in the oxygen reduction reaction and supercapacitor. ACS Sustain Chem Eng 7:831

  11. Zhou W, Cao X, Zeng Z, Shi W, Zhu Y, Yan Q, Liu H, Wang J, Zhang H (2013) One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ Sci 6:2216

    Article  CAS  Google Scholar 

  12. Wang C, Zhang X, Sun X, Ma Y (2016) Facile fabrication of ethylene glycol intercalated cobalt-nickel layered double hydroxide nanosheets supported on nickel foam as flexible binder-free electrodes for advanced electrochemical energy storage. Electrochim Acta 191:329

    Article  CAS  Google Scholar 

  13. Da M, Jia X, Liu H, Tong Y, Zhao D, Wu X, Wang B (2020) Enhanced electrochemical performances of ZnCo2O4@CoMoO4 core–shell structures with long cycling stabilities. Dalton Trans 49:6242

    Article  Google Scholar 

  14. Hao J, Peng S, Qin T, Wang Z, Wen Y, He D, Zhang J, Zhang Z, Fan X, Cao G (2017) Fabrication of hybrid Co3O4/NiCo2O4 nanosheets sandwiched by nanoneedles for high-performance supercapacitors using a novel electrochemical ion exchange. Sci China Mater 60:1168

    Article  CAS  Google Scholar 

  15. Liu H, Dai M, Zhao D, Wu X, Wang B (2020) Realizing superior electrochemical performance of asymmetric capacitors through tailoring electrode architectures. ACS Appl Energy Mater 3:7004

    Article  CAS  Google Scholar 

  16. Dai M, Zhao D, Liu H, Tong Y, Hu P, Wu X (2020) Nanostructure and doping engineering of ZnCoP for high performance electrolysis of water. Mater Today Energy 16:100412

    Article  Google Scholar 

  17. Liu H, Zhao D, Hu P, Liu Y, Wu X, Xia H (2019) Boosting energy storage and electrocatalytic performances by synergizing CoMoO4@MoZn22 core-shell structures. Chem Eng J 373:485

    Article  CAS  Google Scholar 

  18. Deng F, Yu L, Sun M, Lin T, Cheng G, Lan B, Ye F (2014) Controllable growth of hierarchical NiCo2O4 nanowires and nanosheets on carbon fiber paper and their morphology-dependent pseudocapacitive performances. Electrochim Acta 133(1):382–390

    Article  CAS  Google Scholar 

  19. Cai D, Liu B, Wang D, Wang L, Liu Y, Li H, Wang Y, Li Q, Wang T (2014) Construction of unique NiCo2O4 nanowire@CoMoO4 nanoplate core/shell arrays on Ni foam for high areal capacitance supercapacitors. J Mater Chem A 2:4954–4960

    Article  CAS  Google Scholar 

  20. Zhang K, Lin L, Hussain S, Han S (2018) Core–shell NiCo2O4@ZnWO4 nanosheets arrays electrode material deposited at carbon-cloth for flexible electrochemical supercapacitors. J Mater Sci 29:12871–12877

    CAS  Google Scholar 

  21. Cai D, Liu B, Wang D, Wang L, Liu Y, Li H, Wang Y (2014) Qiuhong Li and Taihong Wang, Construction of unique NiCo2O4 nanowire@CoMoO4 nanoplate core/shell arrays on Ni foam for high areal capacitance Supercapacitors. J Mater Chem A 2:4954

    Article  CAS  Google Scholar 

  22. Park TY, Muralee Gopi CVV, Vinodh R, Kim HJ (2019) Facile synthesis of highly efficient V2O5@NiCo2O4 as battery-type electrode material for high-performance electrochemical supercapacitors. J Mater Sci Mater Electron 30:13519–13524

    Article  Google Scholar 

  23. Zhang Z, Yao Z, Li Y, Lu S, Wu X, Jiang Z (2022) Cation-induced Ti3C2Tx MXene hydrogel for capacitive energy storage. Chem Eng J 433:134488

    Article  CAS  Google Scholar 

  24. Jiang Q, Lei Y, Liang H, Xi K, Xia C, Alshareef HN (2020) Review of MXene electrochemical microsupercapacitors. Energy Stor Mater 27:78

  25. Fu Q, Wang X, Zhang N, Wen J, Li L, Gao H (2018) Xitian Zhang, Self-assembled Ti3C2Tx/SCNT composite electrode with improved electrochemical performance for supercapacitor. J Colloid Interface Sci 511:128

    Article  CAS  PubMed  Google Scholar 

  26. Liu Y, Lan Y, Ming W, Song Y, Zhao Y, Yao S, Yan D (2023) Enhanced electrochemical properties of NiCo2-LDH/MoO2/MXene composites with excellent cycling stability. J Phys Chem Solids 181:111511

    Article  CAS  Google Scholar 

  27. Ramachandrana R, Rajavel K, Xuan W, Linc D, Wang F (2018) Influence of Ti3C2Tx (MXene) intercalation pseudocapacitance on electrochemical performance of Co-MOF binder-free electrode. Ceram Int 44:14425

    Article  Google Scholar 

  28. Zhao Y, Li Y, Song Y, Zhang Y, Zhang Y, Ma S, Li W (2023) Heterostructured electrodes of superior electrochemical performance CuCo2-NSs/NiCo2S4 for asymmetric hybrid capacitor. J Solid State Electr 27:391–397

    Article  CAS  Google Scholar 

  29. Zhao Y, Zhang Y, Wang Q, Song Y, Zhang Y, Liu L, Li W (2022) Controlled preparation of NiCo-LDH@CuCo2O4/Ti3C2 core−shell structure for high performance asymmetric supercapacitor. Mater Technol 13:2736

    Article  Google Scholar 

  30. Zhao Y, Wang Yu, Zhang Y, Zhang Y, Yao S, Ma S, Song Y, Li W (2023) One-step hydrothermal synthesis of ZnCo2O4 nanowire/Mxene-Ti3C2 nanolamella composites for high-performance supercapacitors. Mater Lett 337:133962

  31. Zhao Y, Song Y, Wang B, Zhang Y, Zhu X, Zhang Y, Li W (2022) Hierarchical NiCo2@PEDOT/PMo12 core and shell architectures for high-performance supercapacitors. Mater Technol 14:3205

    Article  Google Scholar 

  32. Liu C, Wu X, Xia H (2018) Flexible Mn-decorated NiCo2S4 core-shell nanowire arrays for a high performance hybrid supercapacitor electrode with a long cycle life. Cryst Eng Comm 20:4735–4744

    Article  CAS  Google Scholar 

  33. Dai M, Jia X, Liu H, Tong Y, Zhao D, Wu X, Wang B (2020) Enhanced electrochemical performances of ZnCo2O4@CoMoO4 core–shell structures with long cycling stabilities. Dalton T 49:6242

    Article  CAS  Google Scholar 

  34. Yan Z, Guo C, Yang F, Zhang C, Mao Y, Cui S, Wei Y, Hou L, Xu L (2017) Cliff-like NiO/Ni3S2 directly grown on Ni foam for battery-type electrode with high area capacity and long cycle stability. Electrochim Acta 251:235–243

    Article  CAS  Google Scholar 

  35. Cui K, Du L, Du W, Cui L, Zhang Y, Chen W, Low CTJ, Zai J (2023) Rational design of hierarchically nanostructured NiTe@CoxSy composites for hybrid supercapacitors with impressive rate capability and robust cycling durableness. J Colloid Interface Sci 643:292–304

    Article  CAS  PubMed  Google Scholar 

  36. Liu Q, Hong X, You X, Zhang X, Zhao X, Chen X, Ye M, Liu X (2020) Designing heterostructured metal sulfide core-shell nanoneedle films as battery-type electrodes for hybrid supercapacitors. Energy Stor Mater 24:541–549

    Google Scholar 

  37. Liu C, Jiang W, Hu F, Wu X, Xue D (2018) Mesoporous NiCo2O4 nanoneedle arrays as supercapacitor electrode materials with excellent cycling stabilities. Inorg Chem Front 5:835–843

    Article  CAS  Google Scholar 

  38. Su W, Wu F, Fang L, Hu J, Liu L, Guan T, Long X, Luo H, Zhou M (2019) NiCo-LDH nanowires@nanosheets core-shell structure grown on carbon fiber cloth for high performance flexible supercapacitor electrode. J Alloy Compd 799:15–25

    Article  CAS  Google Scholar 

  39. Wang Z, Zhu Z, Qiu J, Yang S (2014) High performance flexible solid-state asymmetric supercapacitors from MnO2/ZnO core–shell nanorods//specially reduced graphene oxide. J Mater Chem C 2:1331–1336

    Article  Google Scholar 

  40. Saravanakumar B, Jayaseelan SS, Seo MK, Kim HY, Kim BS (2017) NiCo2S4 nanosheet-decorated 3D, porous Ni film@Ni wire electrode materials for all solid-state asymmetric supercapacitor applications. Nanoscale 9:18819–18834

    Article  CAS  PubMed  Google Scholar 

  41. Chen Z, Li Y, Hu Z, Miao Y, Sui Y, Qi J, Wei F, Ren Y, Zhan Z, Liu J, Sun Z, Zhou M, Meng D (2020) In-situ growth of core-shell NiCo2O4@Ni-Co layered double hydroxides for all-solid-state flexible hybrid supercapacitor. Colloid Surface A 607:125417

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Natural Science Foundation of Liaoning Province (2019-ZD-0080) and the Foundation of Liaoning Province Education Administration (LQ2020013).

Author information

Authors and Affiliations

Authors

Contributions

Yanan Zhao’s role is writing, original draft, and investigation. Shujia Ma, Jiayue Tai, and Yuli Song’s role is carrying out measurements. Lidong Wang’s role is analysis of the data. Shuhua Yao and Wenze Li’s roles are experimental design.

Corresponding authors

Correspondence to Yanan Zhao or Wenze Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jiayue Tai and Shujia Ma contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 157 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tai, J., Ma, S., Song, Y. et al. Hydrothermal synthesis of flower-like NiCo2-LDH/MXene-Ti3C2 composites for high-performance capacitors. J Solid State Electrochem 27, 3307–3314 (2023). https://doi.org/10.1007/s10008-023-05609-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05609-4

Keywords

Navigation