Skip to main content
Log in

High catalytic activity of Ti4O7/CNTs oxygen reduction reaction (ORR) electrocatalysts with excellent circulation and methanol resistance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electro catalysts play a vital role in facilitating the reaction process in the oxygen reduction reaction (ORR) of fuel cells. In methanol fuel cells, methanol easily penetrates the diaphragm rendering the ORR catalyst inactive. Although commercial platinum exhibits excellent ORR catalytic activity, its poor methanol resistance and long-time durability severely restrict its sustainable development and application. This work synthesized Ti4O7/CNT nanocomposite electrocatalysts by using the sol-gel method followed by high-temperature carbothermal reduction. The obtained catalysts exhibit a large electrochemically active surface area (347.89 cm2) and low interfacial charge transfer resistance (64.5 Ω). The reduction potential (0.73 V), onset potential (0.93 V), half-wave potential (0.73 V), and electron transfer number (3.7) of this electrocatalyst are all close to those of the Pt/C electrocatalysts in alkaline medium. Simultaneously, it also possesses remarkable methanol tolerance and long-term durability, whose relative current density can maintain above 74% after cycling for 24 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li ZJ, Luan Y, Qu Y, Jing L (2015) Modification strategies with inorganic acids for efficient photocatalysts by promoting the adsorption of O2. ACS Appl Mater Interf 7:22727–22740

    Article  CAS  PubMed  Google Scholar 

  2. Lyu D, Du Y, Huang S, Mollamahale BY, Zhang X, Hasan SW, Yu F, Wang S, Tian ZQ, Shen PK (2019) Highly efficient multifunctional Co–N–C electrocatalysts with synergistic effects of Co–N moieties and Co metallic nanoparticles encapsulated in a N-doped carbon matrix for water-splitting and oxygen redox reactions. ACS Appl Mater Interf 11:39809–39819

    Article  CAS  PubMed  Google Scholar 

  3. Li L, Liu H, Wang L, Yue S, Tong X, Zaliznyak T, Taylor GT, Wong SS (2016) Chemical strategies for enhancing activity and charge transfer in ultrathin Pt nanowires immobilized onto nanotube supports for the oxygen reduction reaction. ACS Appl Mater Interf 8:34280–34294

    Article  CAS  PubMed  Google Scholar 

  4. Xiong Y, You M, Liu F, Wu M, Wang S (2020) Pt decorated nanocarbon-intercalated and N-doped graphene with enhanced activity and stability for oxygen reduction reaction. ACS Appl Energy Mater 3:2490–2495

    Article  CAS  Google Scholar 

  5. Esfahani RAM, Vankova SK, Videla AHM, Specchia S (2017) Innovative carbon-free low content Pt catalyst supported on Mo-doped titanium suboxide (Ti3O5-Mo) for stable and durable oxygen reduction reaction. Appl Catal B Environ 201:419–429

    Article  Google Scholar 

  6. Li M, Zhou J, Bi Y, Zhou S, Mo C (2019) Transition metals (Co, Mn, Cu) based composites as catalyst in microbial fuel cells application: the effect of catalyst composition. Chem Eng J 383

    Article  Google Scholar 

  7. Li L, Shen S, Wei G, Li X, Yang K, Feng Q, Zhang J (2019) A comprehensive investigation on pyrolyzed Fe-N-C composites as highly efficient electrocatalyst toward the oxygen reduction reaction of PEMFCs. ACS Appl Mater Interf11:14126–14135

    Article  CAS  PubMed  Google Scholar 

  8. Wei H, Rodriguez EF, Best AS, Hollenkamp AF, Chen D, Caruso RA (2017) Chemical bonding and physical trapping of sulfur in mesoporous Magnéli Ti4O7 microspheres for high-performance Li–S battery. Adv Energy Mater 7:1601616

    Article  Google Scholar 

  9. Han X, Zhang W, Ma X, Zhong C, Zhao N, Hu W, Deng Y (2019) Identifying the activation of bimetallic sites in NiCo_2S_4@g-C_3N_4-CNT hybrid electrocatalysts for synergistic oxygen reduction and evolution. Adv Mater 31:1808281

    Article  Google Scholar 

  10. Shen J, Gao J, Ji L, Chen X, Wu C (2019) Three-dimensional interlinked Co_3O_4-CNTs hybrids as novel oxygen electrocatalyst. Appl Surf Sci 497

    Article  CAS  Google Scholar 

  11. Senevirathne K, Hui R, Campbell S, Ye S, Zhang J (2012) Electrocatalytic activity and durability of Pt/NbO 2 and Pt/Ti 4 O 7 nanofibers for PEM fuel cell oxygen reduction reaction. Electrochim Acta 59:538–547

    Article  Google Scholar 

  12. Wu D, Peng C, Yin C, Tang H (2020) Review of system integration and control of proton exchange membrane fuel cells. Electrochem Energy Rev 3:1–40

    Article  Google Scholar 

  13. Wu X, Li S, Yao S, Liu M, Pang S, Shen X, Li T, Qin S (2021) Nanosized Ti4O7 supported on carbon nanotubes composite modified separator for enhanced electrochemical properties of lithium sulfur battery. Int J Energy Res 45:4331–4344

    Article  CAS  Google Scholar 

  14. Lun G, Yin J, Chaplin BP (2016) Development and characterization of ultrafiltration TiO2 Magnéli phase reactive electrochemical membranes. Environ Sci Technol 50:1428–1436

    Article  Google Scholar 

  15. Wang HXL (2010) Carbon-coated Magnéli-phase TinO2n-1 nanobelts as anodes for Li-ion batteries and hybrid electrochemical cells. Appl Phys Lett 97:862

    Google Scholar 

  16. Takeuchi T, Fukushima J, Hayashi Y, Takizawa H (2017) Synthesis of Ti4O7 nanoparticles by carbothermal reduction using microwave rapid heating. Catalysts 7:65

    Article  Google Scholar 

  17. Fang W, Shi R, Lei Y, Lei Z, Jiang R, Wang D, Liu Z, Jie S (2019) Formation mechanisms of interfaces between different TinO2n1 phases prepared by carbothermal reduction reaction. CrystEngComm 21:524–534

    Article  Google Scholar 

  18. You S, Liu B, Gao Y, Wang Y, Tang CY, Huang Y, Ren N (2016) Monolithic porous Magnéli-phase Ti4O7 for electro-oxidation treatment of industrial wastewater. Electrochim Acta 214:326–335

    Article  CAS  Google Scholar 

  19. Wu D, Yang C, Sun J, Zhong P, Ma X, Lei Y (2022) Ti4O7/g-C3N4 nanocomposites as an excellently durable and active electrocatalyst for oxygen reduction reaction. Adv Mater Interfaces 9:2101831

    Article  CAS  Google Scholar 

  20. Wang F, Ding X, Shi R, Li M, Lei Y, Lei Z, Jiang G, Xu F, Wang H, Jia L (2019) Facile synthesis of Ti 4 O 7 on hollow carbon spheres with enhanced polysulfide binding for high-performance lithium–sulfur batteries. J Mater Chem A 7:10494–10504

    Article  CAS  Google Scholar 

  21. Lei Y, Lin X, Wu D, Wang Z, Zhong P, Ma X, Sun J (2020) Diverse interface structures in TiO2 (B)/anatase dual-phase nanofibers. Adv Mater Interfaces 7:1901819

    Article  CAS  Google Scholar 

  22. Geng P, Su J, Miles C, Comninellis C, Chen G (2015) Highly-ordered Magnéli Ti4O7 nanotube arrays as effective anodic material for electro-oxidation. Electrochim Acta 153:316–324

    Article  CAS  Google Scholar 

  23. Shi R, Li M, Zhang Y, Lei Y, Zhu Y, Jiang R, He X, Lei Z, Liu Z, Zhu H, Sun J (2020) Design and synthesis of carbon nanofibers decorated by dual-phase TinO2n-1 nanoparticles with synergistic catalytic effect as high performance oxygen reduction reaction catalysts. Electrochim Acta 344

    Article  CAS  Google Scholar 

  24. Yao C, Li F, Li X, Xia D (2012) Fiber-like nanostructured Ti 4 O 7 used as durable fuel cell catalyst support in oxygen reduction catalysis. J Mater Chem 22:16560–16565

    Article  CAS  Google Scholar 

  25. Wei Y, Wu D, Yong C, Wang Z, Zhong P, Qiu J, Fan J, Sun J, Lei Y, Wu X (2023) Robust and highly conductive Ti4O7/MXene nanocomposites as high-performance and long cyclic stability oxygen reduction electrocatalysts. Appl Surf Sci 607

    Article  CAS  Google Scholar 

  26. Eren EO, Özkan N, Devrim Y (2021) Polybenzimidazole-modified carbon nanotubes as a support material for platinum-based high-temperature proton exchange membrane fuel cell electrocatalysts. Int J Hydrogen Energy 46:29556–29567

    Article  CAS  Google Scholar 

  27. Wang Q, Dai N, Zheng J, Zheng JP (2019) Preparation and catalytic performance of Pt supported on Nafion® functionalized carbon nanotubes. J Electroanal Chem 854

    Article  CAS  Google Scholar 

  28. Di Crescenzo A, Bardini L, Sinjari B, Traini T, Marinelli L, Carraro M, Germani R, Di Profio P, Caputi S, Di Stefano A (2013) Surfactant hydrogels for the dispersion of carbon-nanotube-based catalysts. Chem Eur J 19:16415–16423

    Article  PubMed  Google Scholar 

  29. Ye L, Gao Y, Zhu S, Zheng J, Li P, Zheng JP (2017) A Pt content and pore structure gradient distributed catalyst layer to improve the PEMFC performance. Int J Hydrogen Energy 42:7241–7245

    Article  CAS  Google Scholar 

  30. Wang W, Kuai L, Cao W, Huttula M, Ollikkala S, Ahopelto T, Honkanen AP, Huotari S, Yu M, Geng B (2017) Mass-production of mesoporous MnCo2O4 spinels with manganese (IV)-and cobalt (II)-rich surfaces for superior bifunctional oxygen electrocatalysis. Angew Chem 129:15173–15177

    Article  Google Scholar 

  31. Du C, Wang Q, Peng Y, Lu S, Ji L, Ni M (2017) Catalytic oxidation of 1, 2-DCBz over V2O5/TiO2-CNTs: effect of CNT diameter and surface functional groups. Environ Sci Pollut Res 24:4894–4901

    Article  CAS  Google Scholar 

  32. Wang W, Kuai L, Cao W, Huttula M, Ollikkala S, Ahopelto T, Honkanen AP, Huotari S, Yu M, Geng B (2017) Mass-production of mesoporous MnCo(2) O(4) spinels with manganese(IV)- and cobalt(II)-rich surfaces for superior bifunctional oxygen electrocatalysis. Angew Chem Int Ed Engl 56:14977–14981

    Article  CAS  PubMed  Google Scholar 

  33. Zhang S, Shao Y, Yin G, Lin Y (2010) Carbon nanotubes decorated with Pt nanoparticles via electrostatic self-assembly: a highly active oxygen reduction electrocatalyst. J Mater Chem 20:2826–2830

    Article  CAS  Google Scholar 

  34. Zhang W, Sherrell P, Minett AI, Razal JM, Chen J (2010) Carbon nanotube architectures as catalyst supports for proton exchange membrane fuel cells. Energy Environ Sci 3:1286–1293

    Article  CAS  Google Scholar 

  35. Wang Y-J, Fang B, Li H, Bi XT, Wang H (2016) Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells. Prog Mater Sci 82:445–498

    Article  CAS  Google Scholar 

  36. Akbari E, Buntat Z (2017) Benefits of using carbon nanotubes in fuel cells: a review. Int J Energy Res 41:92–102

    Article  Google Scholar 

  37. Grewal S, Macedo Andrade A, Nelson AJ, Thai K, Karimaghaloo A, Lee E, Lee MH (2018) Critical impact of graphene functionalization for transition metal oxide/graphene hybrids on oxygen reduction reaction. J Phys Chem C 122:10017–10026

    Article  CAS  Google Scholar 

  38. Zhao A, Masa J, Xia W (2015) Very low amount of TiO 2 on N-doped carbon nanotubes significantly improves oxygen reduction activity and stability of supported Pt nanoparticles. Phys Chem Chem Phys 17:10767–10773

    Article  CAS  PubMed  Google Scholar 

  39. Jiang W-J, Gu L, Li L, Zhang Y, Zhang X, Zhang L-J, Wang J-Q, Hu J-S, Wei Z, Wan L-J (2016) Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe–N x. J Am Chem Soc 138:3570–3578

    Article  CAS  PubMed  Google Scholar 

  40. Ibrahim KB, Su W-N, Tsai M-C, Chala SA, Kahsay AW, Yeh M-H, Chen H-M, Duma AD, Dai H, Hwang B-J (2018) Robust and conductive Magnéli phase Ti4O7 decorated on 3D-nanoflower NiRu-LDH as high-performance oxygen reduction electrocatalyst. Nano Energy 47:309–315

    Article  CAS  Google Scholar 

  41. Guo J, Zhang S, Zheng M, Tang J, Liu L, Chen J, Wang X (2020) Graphitic-N-rich N-doped graphene as a high performance catalyst for oxygen reduction reaction in alkaline solution. Int J Hydrogen Energy 45:32402–32412

    Article  CAS  Google Scholar 

  42. Liu R, Liu H, Li Y, Yi Y, Shang X, Zhang S, Yu X, Zhang S, Cao H, Zhang G (2014) Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions. Nanoscale 6:11336–11343

    Article  CAS  PubMed  Google Scholar 

  43. Wang G, Zhang J, Kuang S, Zhang W (2016) Enhanced electrocatalytic performance of a porous G-C3N4/graphene composite as a counter electrode for dye-sensitized solar cells. Chem Eur J 22:11763–11769

    Article  CAS  PubMed  Google Scholar 

  44. Zhao Y, Li L, Liu D, Wu Z, Wang Y, Liu J, Shao G (2021) Sponge tofu-like graphene-carbon hybrid supporting Pt–Co nanocrystals for efficient oxygen reduction reaction and Zn-air battery. Int J Hydrogen Energy 46:15561–15571

    Article  CAS  Google Scholar 

  45. Fuertes AB, Pico F, Rojo JM (2004) Influence of pore structure on electric double-layer capacitance of template mesoporous carbons. J Power Sources 133:329–336

    Article  CAS  Google Scholar 

  46. Qu D, Shi H (1998) Studies of activated carbons used in double-layer capacitors. J Power Sources 74:99–107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors expressed their thanks for the technical support of the Instrumental Analysis Center of Xidian University.

Funding

This study was supported by the National Natural Science Foundation of China (Grant No.62274130), the Fundamental Research Funds for the Central Universities (Grant No. QTZX22063 and Grant No. XJS221402), the Fund from the Department of Science and Technology in Shaanxi Province (Grant No.2016FWPT-09), the Natural Science Basic Research Plan of Shaanxi Province (Grant No.2022JM-088, Grant No. 2022JQ-582 and Grant No. 2021JM-191), the National Key Research and Development Program of China (Grant No.2021YFF0500504 and Grant No.2022YFB3204101), and the Wuhu and Xidian University Special Fund for Industry-University-Research Cooperation (Project No.XWYCXY-012021020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yimin Lei or Jie Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3134 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Y., Wei, Y., Wu, D. et al. High catalytic activity of Ti4O7/CNTs oxygen reduction reaction (ORR) electrocatalysts with excellent circulation and methanol resistance. J Solid State Electrochem 27, 2787–2798 (2023). https://doi.org/10.1007/s10008-023-05556-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05556-0

Keywords

Navigation