Skip to main content
Log in

Electrochemical properties of (Co,Fe)CN, cobaltous Prussian blue analogue

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A Prussian blue analogue (Co,Fe)CN with Fe and Co ions linked by CN ions was synthesized; the synthesis was aimed at obtaining cobalt hexacyanoferrate (CoHCF). However, X-ray phase analysis showed the resemblance of (Co,Fe)CN to sodium iron hexacyanocobaltate (FeHCC) Na0.108Fe[Co(CN)6]. The electron paramagnetic resonance (EPR) spectra do not agree with the transition of CoHCF to the latter compound, but do not exclude the possibility of only partial re-coordination of the cyanide ions. At the same time, EPR also excludes formation of the targeted CoHCF. The Fourier transform infrared spectra also indicate that (Co,Fe)CN differs from CoHCF and FeHCC.

The (Co,Fe)CN electrochemistry has been studied by cyclic voltammetry. (Co,Fe)CN is electroactive in solutions of alkali metal salts, from Li to Cs, and ammonium salts. The shape of (Co,Fe)CN cyclic voltammograms is unique and does not resemble the curves of CoHCF and FeHCC. It should be noted that the electrode process of CoHCF is blocked in solutions of rubidium, cesium, and ammonium salts, while (Co,Fe)CN is electroactive in these solutions. (Co,Fe)CN produces one pair of peaks in a heavy alkali metal salt solution, whereas in the presence of light alkali metals, it produces two to three pairs of peaks. Electrochemical data also reveal the difference between (Co,Fe)CN and CoHCF and are one more argument in favor of the partial CN ion linkage isomerization. Unfortunately, all the evidence for the re-coordination of cyanide ions gained in this work is only indirect.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wessells CD, Peddada SV, Huggins RA, Cui Y (2011) Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett 11:5421–5425. https://doi.org/10.1021/nl203193q

    Article  CAS  PubMed  Google Scholar 

  2. Pasta M, Wang RY, Ruffo R, Qiao R, Lee H-W, Shyam B, Guo M, Wang Y, Wray LA, Yang W, Toney MF, Cui Y (2016) Manganese–cobalt hexacyanoferrate cathodes for sodium-ion batteries. J Mater Chem A 4:4211–4223. https://doi.org/10.1039/C5TA10571D

    Article  CAS  Google Scholar 

  3. Zhang X, Tao L, He P, Zhang X, He M, Dong F, He S, Li C, Liu H, Wang S, Zhang Y (2018) A novel cobalt hexacyanoferrate/multi-walled carbon nanotubes nanocomposite: spontaneous assembly synthesis and application as electrode materials with significantly improved capacitance for supercapacitors. Electrochim Acta 259:793–802. https://doi.org/10.1016/j.electacta.2017.11.007

    Article  CAS  Google Scholar 

  4. Li W-J, Han C, Cheng G, Chou S-L, Liu H-K, Dou S-X (2019) Chemical properties, structural properties, and energy storage applications of Prussian blue analogues. Small 15:1900470. https://doi.org/10.1002/smll.201900470

    Article  CAS  Google Scholar 

  5. Marzak P, Kosiahn M, Yun J, Bandarenka AS (2019) Intercalation of Mg2+ into electrodeposited Prussian blue analogue thin films from aqueous electrolytes. Electrochim Acta 307:157–163. https://doi.org/10.1016/j.electacta.2019.03.094

    Article  CAS  Google Scholar 

  6. Ma L, Li X, Zhang G, Huang Z, Han C, Li H, Tang Z, Zhi C (2020) Initiating a wearable solid-state Mg hybrid ion full battery with high voltage, high capacity and ultra-long lifespan in air. Energy Storage Mater 31:451–458. https://doi.org/10.1016/j.ensm.2020.08.001

    Article  Google Scholar 

  7. Goda ES, Lee S, Sohail M, Yoon KR (2020) Prussian blue and its analogues as advanced supercapacitor electrodes. J Energy Chem 50:206–229. https://doi.org/10.1016/j.jechem.2020.03.031

    Article  Google Scholar 

  8. Ru Y, Zheng S, Xue H, Pang H (2020) Potassium cobalt hexacyanoferrate nanocubic assemblies for high-performance aqueous aluminum ion batteries. Chem Eng J 382:122853. https://doi.org/10.1016/j.cej.2019.122853

  9. Zhou A, Cheng W, Wang W, Zhao Q, Xie J, Zhang W, Gao H, Xue L, Li J (2021) Hexacyanoferrate-type Prussian blue analogs: principles and advances toward high-performance sodium and potassium ion batteries. Adv Energy Mater 11:2000943. https://doi.org/10.1002/aenm.202000943

    Article  CAS  Google Scholar 

  10. Peng J, Zhang W, Liu Q, Wang J, Chou S, Liu H, Dou S (2022) Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv Mater 34:2108384. https://doi.org/10.1002/adma.202108384

  11. Xie B, Sun B, Gao T, Ma Y, Yin G, Zuo P (2022) Recent progress of Prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries. Coord Chem Rev 460:214478. https://doi.org/10.1016/j.ccr.2022.214478

  12. Wang Q, Li J, Jin H, Xin S, Gao H (2022) Prussian-blue materials: revealing new opportunities for rechargeable batteries. InfoMat 4:e12311. https://doi.org/10.1002/inf2.12311

  13. Yang Y, Zhou J, Wang L, Jiao Z, Xiao M, Huang Q, Liu M, Shao Q, Sun X, Zhang J (2022) Prussian blue and its analogues as cathode materials for Na-, K-, Mg-, Ca-, Zn- and Al-ion batteries. Nano Energy 99:107424. https://doi.org/10.1016/j.nanoen.2022.107424

  14. You Y, Wu X-L, Yin Y-X, Guo Y-G (2014) High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ Sci 7:1643–1647. https://doi.org/10.1039/C3EE44004D

    Article  CAS  Google Scholar 

  15. Zhang Y, Wang Y, Lu L, Sun C, Yu DYW (2021) Vanadium hexacyanoferrate with two redox active sites as cathode material for aqueous Zn-ion batteries. J Power Sources 484:229263. https://doi.org/10.1016/j.jpowsour.2020.229263

  16. Kulesza PJ, Malik MA, Zamponi S, Berrettoni M, Marassi R (1995) Electrolyte-cation-dependent coloring, electrochromism and thermochromism of cobalt(II) hexacyanoferrate(III, II) films. J Electroanal Chem 397:287–292. https://doi.org/10.1016/0022-0728(95)04187-8

    Article  Google Scholar 

  17. Kulesza PJ, Malik MA, Miecznikowski K, Wolkiewicz A, Zamponi S, Berrettoni M, Marassi R (1996) Countercation-sensitive electrochromism of cobalt hexacyanoferrate films. J Electrochem Soc 143:L10–L12. https://doi.org/10.1149/1.1836374

    Article  CAS  Google Scholar 

  18. Kulesza PJ, Malik MA, Berrettoni M, Giorgetti M, Zamponi S, Schmidt R, Marassi R (1998) Electrochemical charging, countercation accommodation, and spectrochemical identity of microcrystalline solid cobalt hexacyanoferrate. J Phys Chem B 102:1870–1876. https://doi.org/10.1021/jp9726495

    Article  CAS  Google Scholar 

  19. Kulesza PJ, Zamponi S, Malik MA, Berrettoni M, Wolkiewicz A, Marassi R (1998) Spectroelectrochemical characterization of cobalt hexacyanoferrate films in potassium salt electrolyte. Electrochim Acta 43:919–923. https://doi.org/10.1016/S0013-4686(97)00212-0

    Article  CAS  Google Scholar 

  20. Chen S-M (1998) Characterization and electrocatalytic properties of cobalt hexacyanoferrate films. Electrochim Acta 43:3359–3369. https://doi.org/10.1016/S0013-4686(98)00074-7

    Article  CAS  Google Scholar 

  21. Kaplun MM, Ivanov VD (2000) Modification of platinum and graphite electrodes by cobalt hexacyanoferrate films. Russ J Electrochem 36:501–508. https://doi.org/10.1007/BF02757413

    Article  CAS  Google Scholar 

  22. Kaplun MM, Smirnov YE, Mikli V, Malev VV (2001) Structure of cobalt hexacyanoferrate films synthesized from a complex electrolyte. Russ J Electrochem 37:914–924. https://doi.org/10.1023/A:1011992109433

    Article  CAS  Google Scholar 

  23. Ivanov VD, Kaplun MM, Kondrat’ev VV, Tikhomirova AV, Zigel’ VV, Yakovleva SV, Malev VV (2002) Charge transfer in iron and cobalt hexacyanoferrate films: effect of the film thickness and the counterion nature. Russ J Electrochem 38:173–181. https://doi.org/10.1023/A:1016820332194

    Article  CAS  Google Scholar 

  24. Vittal R, Gomathi H (2002) Beneficial effects of cetyltrimethylammonium bromide in the modification of electrodes with cobalt hexacyanoferrate surface films. J Phys Chem B 106:10135–10143. https://doi.org/10.1021/jp020337i

    Article  CAS  Google Scholar 

  25. Lezna RO, Romagnoli R, de Tacconi NR, Rajeshwar K (2002) Cobalt hexacyanoferrate: compound stoichiometry, infrared spectroelectrochemistry, and photoinduced electron transfer. J Phys Chem B 106:3612–3621. https://doi.org/10.1021/jp013991r

    Article  CAS  Google Scholar 

  26. Shi L-H, Wu T, Wang M-J, Li D, Zhang Y-J, Li J-H (2005) Molecule-based cobalt hexacyanoferrate nanoparticle: synthesis, characterization, and its electrochemical properties. Chin J Chem 23:149–154. https://doi.org/10.1002/cjoc.200590149

    Article  CAS  Google Scholar 

  27. Berrettoni M, Giorgetti M, Zamponi S, Conti P, Ranganathan D, Zanotto A, Saladino ML, Caponetti E (2010) Synthesis and characterization of nanostructured cobalt hexacyanoferrate. J Phys Chem C 114:6401–6407. https://doi.org/10.1021/jp100367p

    Article  CAS  Google Scholar 

  28. Bo AL, Lin XQ (1999) In-situ external reflection FTIR spectroelectrochemical and XPS investigations of cobalt-cyanometallates as inorganic polymeric materials on a platinum electrode. Talanta 49:717–723. https://doi.org/10.1016/S0039-9140(99)00014-4

    Article  CAS  PubMed  Google Scholar 

  29. Sauter S, Wittstock G, Szargan R (2001) Localisation of electrochemical oxidation processes in nickel and cobalt hexacyanoferrates investigated by analysis of the multiplet patterns in X-ray photoelectron spectra. Phys Chem Chem Phys 3:562–569. https://doi.org/10.1039/b008430l

    Article  CAS  Google Scholar 

  30. Hallmeier KH, Sauter S, Szargan R (2001) XANES and EXAFS investigations of bonding and structure of Ni and Co derivatives from Prussian blue coordination compounds. Inorg Chem Commun 4:153–156. https://doi.org/10.1016/S1387-7003(01)00151-4

    Article  CAS  Google Scholar 

  31. Hillman AR, Skopek MA, Gurman SJ (2010) EXAFS structural studies of electrodeposited Co and Ni hexacyanoferrate films. J Solid State Electrochem 14:1997–2010. https://doi.org/10.1007/s10008-010-1033-9

    Article  CAS  Google Scholar 

  32. Hosseini P, Wittstock G, Brand I (2018) Infrared spectroelectrochemical analysis of potential dependent changes in cobalt hexacyanoferrate and copper hexacyanoferrate films on gold electrodes. J Electroanal Chem 812:199–206. https://doi.org/10.1016/j.jelechem.2017.12.029

    Article  CAS  Google Scholar 

  33. Sato O, Einaga Y, Iyoda T, Fujishima A, Hashimoto K (1997) Cation-driven electron transfer involving a spin transition at room temperature in a cobalt iron cyanide thin film. J Phys Chem B 101:3903–3905. https://doi.org/10.1021/jp9701451

    Article  CAS  Google Scholar 

  34. Sato O, Iyoda T, Fujishima A, Hashimoto K (1996) Photoinduced magnetization of a cobalt-iron cyanide. Science 272:704–705. https://doi.org/10.1126/science.272.5262.704

    Article  CAS  PubMed  Google Scholar 

  35. Sato O, Einaga Y, Fujishima A, Hashimoto K (1999) Photoinduced long-range magnetic ordering of a cobalt-iron cyanide. Inorg Chem 38:4405–4412. https://doi.org/10.1021/ic980741p

    Article  CAS  PubMed  Google Scholar 

  36. Goujon A, Roubeau O, Varret F, Dolbecq A, Bleuzen A, Verdaguer M (2000) Photo-excitation from dia- to ferri-magnetism in a Rb–Co–hexacyanoferrate Prussian blue analogue. Eur Phys J B 14:115–124. https://doi.org/10.1007/s100510050112

    Article  CAS  Google Scholar 

  37. Bleuzen A, Escax V, Ferrier A, Villain F, Verdaguer M, Münsch P, Itié J-P (2004) Thermally induced electron transfer in a CsCoFe Prussian blue derivative: the specific role of the alkali-metal ion. Angew Chem Int Ed 43:3728–3731. https://doi.org/10.1002/anie.200460086

    Article  CAS  Google Scholar 

  38. Giorgetti M, Aquilanti G, Ciabocco M, Berrettoni M (2015) Anatase-driven charge transfer involving a spin transition in cobalt iron cyanide nanostructures. Phys Chem Chem Phys 17:22519–22522. https://doi.org/10.1039/C5CP03580E

    Article  CAS  PubMed  Google Scholar 

  39. Bordage A, Bleuzen A (2020) Influence of the number of alkali cation on the photo-induced CoIIIFeII ↔ CoIIFeIII charge transfer in CsxCoFe PBAs – A Co K-edge XANES study. Radiat Phys Chem 175:108143. https://doi.org/10.1016/j.radphyschem.2019.02.002

  40. Cammarata M, Zerdane S, Balducci L, Azzolina G, Mazerat S, Exertier C, Trabuco M, Levantino M, Alonso-Mori R, Glownia JM, Song S, Catala L, Mallah T, Matar SF, Collet E (2021) Charge transfer driven by ultrafast spin transition in a CoFe Prussian blue analogue. Nat Chem 13:10–14. https://doi.org/10.1038/s41557-020-00597-8

    Article  CAS  PubMed  Google Scholar 

  41. Moon SB, Moon JD (1995) Electrochemistry and electrokinetics of Prussian blue modified electrodes obtained using Fe(III) complex. Bull Korean Chem Soc 16:819–823. https://doi.org/10.5012/bkcs.1995.16.9.819

    Article  CAS  Google Scholar 

  42. Shriver DF, Shriver SA, Anderson SE (1965) Ligand field strength of the nitrogen end of cyanide and structures of cubic cyanide polymers. Inorg Chem 4:725–730. https://doi.org/10.1021/ic50027a028

    Article  CAS  Google Scholar 

  43. House JE Jr, Bailar JC Jr (1969) Kinetics of the linkage isomerization in iron(II) hexacyanochromate(III). Inorg Chem 8:672–673. https://doi.org/10.1021/ic50073a051

    Article  CAS  Google Scholar 

  44. Cosmano RJ, House JE Jr (1975) Thermally induced linkage isomerization in KCd[Fe(CN)6]. Thermochim Acta 13:127–131. https://doi.org/10.1016/0040-6031(75)80075-X

    Article  CAS  Google Scholar 

  45. House JE Jr, Kob NE (1993) Linkage isomerization in potassium cadmium hexacyanoferrate induced by ultrasound. Inorg Chem 32:1053–1054. https://doi.org/10.1021/ic00058a052

    Article  CAS  Google Scholar 

  46. Reguera E, Bertrán JA, Nuñez L (1994) Study of the linkage isomerization process in hexacyanometallates. Polyhedron 13:1619–1624. https://doi.org/10.1016/S0277-5387(00)83457-9

    Article  CAS  Google Scholar 

  47. Dostal A, Schroeder U, Scholz F (1995) Electrochemistry of chromium(II) hexacyanochromate(III) and electrochemically induced isomerization of solid iron(II) hexacyanochromate(III) mechanically immobilized on the surface of a graphite electrode. Inorg Chem 34:1711–1717. https://doi.org/10.1021/ic00111a017

    Article  CAS  Google Scholar 

  48. Coronado E, Giménez-López MC, Levchenko G, Romero FM, García-Baonza V, Milner A, Paz-Pasternak M (2005) Pressure-tuning of magnetism and linkage isomerism in iron(II) hexacyanochromate. J Am Chem Soc 127:4580–4581. https://doi.org/10.1021/ja043166z

    Article  CAS  PubMed  Google Scholar 

  49. Dumont MF, Risset ON, Knowles ES, Yamamoto T, Pajerowski DM, Meisel MW, Talham DR (2013) Synthesis and size control of iron(II) hexacyanochromate(III) nanoparticles and the effect of particle size on linkage isomerism. Inorg Chem 52:4494–4501. https://doi.org/10.1021/ic302764k

    Article  CAS  PubMed  Google Scholar 

  50. Wilamowska M, Lisowska-Oleksiak A (2011) Synthesis and electrochemical characterization of poly(3,4-ethylenedioxythiophene) modified by iron hexacyanocobaltate. Solid State Ion 188:118–123. https://doi.org/10.1016/j.ssi.2010.09.037

    Article  CAS  Google Scholar 

  51. Yamada Y, Yoneda M, Fukuzumi S (2013) A robust one-compartment fuel cell with a polynuclear cyanide complex as a cathode for utilizing H2O2 as a sustainable fuel at ambient conditions. Chem Eur J 19:11733–11741. https://doi.org/10.1002/chem.201300783

    Article  CAS  PubMed  Google Scholar 

  52. Ciabocco M, Berrettoni M, Chillura DFM, Giorgetti M (2014) Electrochemistry of TiO2–iron hexacyanocobaltate composite electrodes. Solid State Ion 259:53–58. https://doi.org/10.1016/j.ssi.2014.02.019

    Article  CAS  Google Scholar 

  53. Mullaliu A, Conti P, Aquilanti G, Plaisier JR, Stievano L, Giorgetti M (2018) Operando XAFS and XRD study of a Prussian blue analogue cathode material: iron hexacyanocobaltate. Condens Matter 3:36. https://doi.org/10.3390/condmat3040036

    Article  CAS  Google Scholar 

  54. Zhang K, Varma RS, Jang HW, Choi J-W, Shokouhimehr M (2019) +Iron hexacyanocobaltate metal-organic framework: highly reversible and stationary electrode material with rich borders for lithium-ion batteries. J Alloys Compd 791:911–917. https://doi.org/10.1016/j.jallcom.2019.03.379

    Article  CAS  Google Scholar 

  55. Pramudita JC, Schmid S, Godfrey T, Whittle T, Alam M, Hanley T, Brand HEA, Sharma N (2014) Sodium uptake in cell construction and subsequent in operando electrode behaviour of Prussian blue analogues, Fe[Fe(CN)6]1–x·yH2O and FeCo(CN)6. Phys Chem Chem Phys 16:24178–24187. https://doi.org/10.1039/c4cp02676d

    Article  CAS  PubMed  Google Scholar 

  56. Dostal A, Meyer B, Scholz F, Schroeder U, Bond AM, Marken F, Shaw SJ (1995) Electrochemical study of microcrystalline solid Prussian blue particles mechanically attached to graphite and gold electrodes: electrochemically induced lattice reconstruction. J Phys Chem 99:2096–2103. https://doi.org/10.1021/j100007a045

    Article  CAS  Google Scholar 

  57. Reguera E, Bertrán J, Diaz C, Blanco J, Rondón S (1990) Mössbauer and infrared spectroscopic studies of novel mixed valence states in cobaltous ferrocyanides and ferricyanides. Hyperfine Interact 53:391–395. https://doi.org/10.1007/BF02101072

    Article  CAS  Google Scholar 

  58. Lejeune J, Brubach J-B, Roy P, Bleuzen A (2014) Application of the infrared spectroscopy to the structural study of Prussian blue analogues. C R Chimie 17:534–540. https://doi.org/10.1016/j.crci.2014.01.017

    Article  CAS  Google Scholar 

  59. Mullica DF, Oliver JD, Milligan WO, Hills FW (1979) Ferrous hexacyanocobaltate dodecahydrate. Inorg Nucl Chem Lett 15:361–365. https://doi.org/10.1016/0020-1650(79)80111-7

    Article  CAS  Google Scholar 

  60. Joseph G, Gomathi H, Rao GP (1991) Electrodes modified with cobalt hexacyanoferrate. J Electroanal Chem 304:263–269. https://doi.org/10.1016/0022-0728(91)85509-N

    Article  CAS  Google Scholar 

  61. Jiang M, Zhou X, Zhao Z (1991) Cobalt(II) - cyanometallates as new inorganic polymeric materials for surface-modification of some conducting substrates. Ber Bunsenges Phys Chem 95:720–727. https://doi.org/10.1002/bbpc.19910950611

    Article  CAS  Google Scholar 

  62. Ivanov VD, Alieva AR (2000) Electrochemical behavior of electrode modified with a cobalt hexacyanoferrate film: effect of the supporting electrolyte cation. Rus J Electrochem 36:852–860. https://doi.org/10.1007/BF02757058

    Article  CAS  Google Scholar 

  63. Canto-Aguilar EJ, Oliver-Tolentino MA, Ramos-Sánchez G, González I (2021) Effect of the external metal on the electrochemical behavior of M3[Co(CN)6]2 (M: Co, Ni, Cu, Zn), towards their use as anodes in potassium ion batteries. Electrochim Acta 371:137828. https://doi.org/10.1016/j.electacta.2021.137828

  64. Yang C-F, Wang Q, Yi C-Y, Zhao J-H, Fang J, Shen W-G (2012) Electrochemical properties of nanostructured cobalt hexacyanoferrate containing K+ and Cs+ synthesized in water-in-oil AOT reverse microemulsions. J Electroanal Chem 674:30–37. https://doi.org/10.1016/j.jelechem.2012.04.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Dr. Mikhail Yu. Skripkin for the fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir D. Ivanov.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 742 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, V.D. Electrochemical properties of (Co,Fe)CN, cobaltous Prussian blue analogue. J Solid State Electrochem 27, 2419–2432 (2023). https://doi.org/10.1007/s10008-023-05519-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05519-5

Keywords

Navigation