Skip to main content
Log in

EXAFS structural studies of electrodeposited Co and Ni hexacyanoferrate films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

XAS (EXAFS and XANES), XPS and IR spectroscopies were used to extract redox compositional and structural information on films of electrodeposited Co and Ni hexacyanoferrates whose redox state was manipulated electrochemically. The X-ray methods provided direct information on the metal species and IR provided indirect information via the behaviour of the ligand vibration. XPS responses showed that the electrochemical response of Co hexacyanoferrate is attributable to Co (except for a small amount of FeII oxidation at very positive potentials), and of Ni hexacyanoferrate to Fe; XANES edge shifts confirm these deductions. Local structure around the metal atoms was extracted from EXAFS data in terms of M′–N, M′–C and M′–Fe (M′ = Co or Ni) distances and the associated Debye-Waller factors as functions of film charge state. For Co hexacyanoferrate, the redox variation of static disorder was consistent with a molecular model involving discrete CoII and CoIII sites, whose populations respond to potential, but not with a solid-state model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Giorgetti M, Berrettoni M, Zamponi S, Kulesza PJ, Cox JA (2005) Electrochim Acta 51:511–516

    Article  CAS  Google Scholar 

  2. Zamponi S, Giorgetti M, Berrettoni M, Kulesza PJ, Cox JA, Kijak AM (2005) Electrochim Acta 51:118–124

    Article  CAS  Google Scholar 

  3. Kulesza PJ, Malik MA, Berrettoni M, Giorgetti M, Zamponi S, Schmidt R, Marassi R (1998) J Phys Chem B 102:1870–1876

    Article  CAS  Google Scholar 

  4. Mardan A, Ajaz R, Mehmood A, Raza SM, Ghaffar A (1999) Sep Purif Technol 16:147–158

    Article  CAS  Google Scholar 

  5. Hao X, Guo J, Liu S, Sun Y (2006) Trans Nonferr Met Soc China 16:556–561

    Article  CAS  Google Scholar 

  6. Mimura H, Lehto J, Harjula R (1997) J Nucl Sci Technol 34:484–489

    Article  CAS  Google Scholar 

  7. Kulesza PJ, Malik MA, Schmidt R, Smolińska A, Miecznikowski K, Zamponi S, Czerwiński A, Berrettoni M, Marassi RJ (2000) J Electroanal Chem 487:57–65

    Article  CAS  Google Scholar 

  8. Eftekhari A (2004) Electroanalysis 16:1324–1329

    Article  CAS  Google Scholar 

  9. Sato O, Hayami S, Einaga Y, Gu ZZ (2003) Bull Chem Soc Jpn 76:443–470

    Article  CAS  Google Scholar 

  10. Yokoyama T, Ohta T, Sato O, Hashimoto K (1998) Phys Rev B 58:8257–8266

    Article  CAS  Google Scholar 

  11. Sato O, Einaga Y, Iyoda T, Fujishima A, Hashimoto K (1997) Phys Chem B 101:3903–3905

    Article  CAS  Google Scholar 

  12. Lezna RO, Romagnoli R, Tacconi NR, Rajeshwar K (2002) J Phys Chem B 106:3612–3621

    Article  CAS  Google Scholar 

  13. Sato O, Einaga Y, Iyoda T, Fujishima A, Hashimoto K (1997) J Electrochem Soc 144:L11–L13

    Article  CAS  Google Scholar 

  14. Sauter S, Wittstock G, Szargan R (2001) Phys Chem Chem Phys 3:562–569

    Article  CAS  Google Scholar 

  15. Florescu M, Brett CMA (2004) Anal Lett 37:871–886

    Article  CAS  Google Scholar 

  16. de Azevedo WM, de Mattos IL, Navarro M (2006) J Mater Sci: Mater Electron 17:367–371

    Article  CAS  Google Scholar 

  17. Krylov AV, Lisdat F (2007) Electroanalysis 19:23–29

    Article  CAS  Google Scholar 

  18. Florescu M, Barsan M, Pauliukaite R, Brett CMA (2007) Electroanalysis 19:220–226

    Article  CAS  Google Scholar 

  19. Pauliukaite R, Hočevar SB, Hutton EA, Ogorevc B (2007) Electroanalysis 20:47–53

    Article  CAS  Google Scholar 

  20. Prabakar SJR, Narayanan SS (2006) Anal Bioanal Chem 386:2107–2115

    Article  CAS  Google Scholar 

  21. Yang M, Jiang J, Lu Y, He Y, Shen G, Yu R (2007) Biomaterials 28:3408–3417

    Article  CAS  Google Scholar 

  22. Tung TS, Chen LC, Ho KC (2003) Solid State Ion 165:257–267

    Article  CAS  Google Scholar 

  23. Jayalakshmi M, Scholz F (2000) J Power Source 91:217–223

    Article  CAS  Google Scholar 

  24. Gómez-Romero P, Torres-Gómez G (2000) Adv Mater 12:1454–1456

    Article  Google Scholar 

  25. Ambashta RD, Deshingkar DS, Wattal PK, Bahadur D (2006) J Radioanal Nucl Chem 270:585–592

    Article  CAS  Google Scholar 

  26. Green-Pedersen H, Korshin GV (1999) Environ Sci Technol 33:2633–2637

    Article  CAS  Google Scholar 

  27. Hg CW, Ding J, Gan LM (2001) J Solid State Chem 156:400–407

    Article  CAS  Google Scholar 

  28. Martinez-Garcia R, Knobel M, Reguera E (2006) J Phys Condens Matter 18:11243–11254

    Article  CAS  Google Scholar 

  29. Vaucher S, Fielden J, Li M, Dujardin E, Mann S (2002) Nano Lett 2:225–229

    Article  CAS  Google Scholar 

  30. U.S. Patent, US 7,342,708 B2 Electrochromic Device Using Poly(3,4-Ethylenedioxythiopene) and Derivatives Thereof. Mar 11 2008

  31. Giorgetti M, Berrettoni M, Filipponi A, Kulesza PJ, Marassi R (1997) Chem Phys Lett 275:108–112

    Article  CAS  Google Scholar 

  32. Tang Q, Xiong W, Long L (2007) Anal Lett 40:1610–1621

    Article  CAS  Google Scholar 

  33. Wang P, Yuan Y, Jing X, Zhu G (2001) Talanta 53:863–869

    Article  CAS  Google Scholar 

  34. Bharati S, Nogami M, Ikeda S (2001) Langmuir 17:7468–7471

    Article  CAS  Google Scholar 

  35. Joseph J, Gomathi H, Prahakara R (1991) J Electroanal Chem 304:63–269

    Article  Google Scholar 

  36. Dostal A, Meyer B, Scholz F, Schroder U, Bond AM, Marken F, Shaw SJ (1995) J Phys Chem 99:2096–2103

    Article  CAS  Google Scholar 

  37. Zakharchuk NF, Naumov N, Stosser R, Schroder U, Scholz F, Mehner H (1999) J Sol St Electrochem 3:264–276

    Article  CAS  Google Scholar 

  38. Hermes M, Lovric M, Hartl M, Retter U, Scholz F (2001) J Electroanal Chem 501:193–204

    Article  CAS  Google Scholar 

  39. Dostal A, Hermes M, Scholz F (1996) J Electroanal Chem 415:133–141

    Article  CAS  Google Scholar 

  40. Schwudke D, Stosser R, Scholz F (2000) Electrochem Commun 2:301–306

    Article  CAS  Google Scholar 

  41. Holmes SM, Girolami GS (1999) J Am Chem Soc 121:5593–5594

    Article  CAS  Google Scholar 

  42. Verdaguer M, Girolami G (2004) In: Drillon M, Miller JS (ed) Magnetism: molecules to materials. Wiley, Weinheim

  43. Gadet V, Mallah T, Castro I (1992) J Am Chem Soc 114:9213–9214

    Article  CAS  Google Scholar 

  44. Hallmeier HK, Sauter S, Szargan R (2001) Inorg Chem Comm 4:153–156

    Article  CAS  Google Scholar 

  45. Steen WA, Han SW, Yu Q, Gordon RA, Cross JO, Stern EA, Seidler GT, Jeerage KM, Schwartz DT (2002) Langmuir 18:7714–7721

    Article  CAS  Google Scholar 

  46. Dent AJ, Mosselmans JFW (1995) An introduction to EXAFS data analysis. CCLRC Daresbury Laboratory, Warrington

    Google Scholar 

  47. Mosselmans JFW, A Guide to EXCURV98 http://srs.dl.ac.uk/XRS/Computing/Programs/excurv97/excurv98guide.htm Accessed 15 Nov 2009

  48. Garcia-Jareno JJ, Navarro JJ, Roig AF, Scholl H, Vicente F (1995) Electrochim Acta 40:1113–1119

    Article  CAS  Google Scholar 

  49. Siperko LM, Kuwana T (1983) J Electrochem Soc 130:396–402

    Article  CAS  Google Scholar 

  50. Kaplun MM, Smirnov YE, Mikli V, Malev VV (2001) Russ J Electrochem 37:1065–1075

    Article  Google Scholar 

  51. Bard AJ, Faulkner LR (2006) Electrochemical methods fundamentals and applications. Wiley, New York

    Google Scholar 

  52. Martinez-Garcia R, Knobel M, Balmaseda J, Yee-Madeira H, Reguera E (2007) J Phys Chem Sol 68:290–298

    Article  CAS  Google Scholar 

  53. The Chemical Database Service, Daresbury Laboratory, UK http://cds.dl.ac.uk Accessed 25 Nov 2009

  54. West AR (1984) Solid state chemistry and its applications. Wiley, Chichester

    Google Scholar 

  55. Juszczyk C, Hanson M, Ratuszna A, Malecki G (1994) J Phys Cond Matter 6:5697–5706

    Article  Google Scholar 

Download references

Acknowledgements

We thank Daresbury Laboratory for synchrotron beam time and Mr. R. Bilsborrow and Dr. Stephen Fiddy for technical support. MAS thanks Daresbury Laboratory and the Engineering and Physical Science Research Council for financial support.

We thank the NCESS Facility at Daresbury Laboratory for provision of XPS instrument time and Dr. Graham Beamson for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Robert Hillman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hillman, A.R., Skopek, M.A. & Gurman, S.J. EXAFS structural studies of electrodeposited Co and Ni hexacyanoferrate films. J Solid State Electrochem 14, 1997–2010 (2010). https://doi.org/10.1007/s10008-010-1033-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1033-9

Keywords

Navigation