Skip to main content

Advertisement

Log in

Photoelectrochemistry of two-dimensional and layered materials: a brief review

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) materials have unique band structure and show a great promise for optoelectronic and solar energy harvesting applications. Photoelectrochemical (PEC) processes are intensively studied employing these materials, due to their high specific surface area, and the possibility of surface modification by defect engineering/catalyst deposition. The PEC activity of different 2D and layered materials was scrutinized for water oxidation/reduction and for inorganic ion oxidation by a statistical analysis to reveal any specific trends. Furthermore, some frequently studied performance improvement strategies (i.e., heterojunctions, tunnelling, and co‒catalysts) are also discussed. Overall, exploring novel materials of 2D family, and new directions are both needed to initiate further discussions and additional research activity, which might enable to harness the full potential of these exciting materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

© 2017 American Chemical Society; B [29] © 2019 American Chemical Society; C [30] published by AIP Publishing under CC BY 4.0 license; D [31] © 2022 Elsevier; E [37] © 2022 John Wiley and Sons; F [32] © 2022 Elsevier; G [35] © 2019 John Wiley and Sons; H [39] published by Springer Nature under CC BY-NC-SA 4.0 license

Fig. 3

© 2020, John Wiley and Sons; B [12] © 2019 American Chemical Society; C [65] published by American Chemical Society under CC BY 4.0 license

Fig. 4
Fig. 5

© 2018 American Chemical Society; EH [120] published by Royal Society of Chemistry under CC BY-NC 3.0 license

Fig. 6
Fig. 7

© 2017 American Chemical Society; E, F [86] published by MDPI under CC BY 4.0 license; G, H [99] © 2019 Elsevier

Fig. 8

© 2014 Royal Society of Chemistry, permission conveyed through Copyright Clearance Center, Inc; DF) [61] © 2020 John Wiley and Sons

Fig. 9

© 2017 American Chemical Society; E, F [9] © 2018 American Chemical Society

Fig. 10

© 2014 American Chemical Society; B [95] © 2021 American Chemical Society; C [98] © 2019 John Wiley and Sons; D [97] © 2020 American Chemical Society

Similar content being viewed by others

References

  1. He J, Janáky C (2020) Recent Advances in Solar-Driven Carbon Dioxide Conversion: Expectations versus Reality. ACS Energy Lett 5:1996–2014. https://doi.org/10.1021/acsenergylett.0c00645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yu MS, Jesudass SC, Surendran S et al (2022) Synergistic Interaction of MoS2 Nanoflakes on La2Zr2O7 Nanofibers for Improving Photoelectrochemical Nitrogen Reduction. ACS Appl Mater Interfaces 14:31889–31899. https://doi.org/10.1021/acsami.2c05653

    Article  CAS  PubMed  Google Scholar 

  3. Li P, Zhang J, Wang H et al (2014) The photoelectric catalytic reduction of CO2 to methanol on CdSeTe NSs/TiO2 NTs. Catal Sci Technol 4:1070–1077. https://doi.org/10.1039/c3cy00978e

    Article  CAS  Google Scholar 

  4. Li M, Lu Q, Liu M et al (2020) Photoinduced Charge Separation via the Double-Electron Transfer Mechanism in Nitrogen Vacancies g-C3N5/BiOBr for the Photoelectrochemical Nitrogen Reduction. ACS Appl Mater Interfaces 12:38266–38274. https://doi.org/10.1021/acsami.0c11894

    Article  CAS  PubMed  Google Scholar 

  5. She H, Zhou H, Li L et al (2019) Construction of a Two-Dimensional Composite Derived from TiO2 and SnS2 for Enhanced Photocatalytic Reduction of CO2 into CH4. ACS Sustain Chem Eng 7:650–659. https://doi.org/10.1021/acssuschemeng.8b04250

    Article  CAS  Google Scholar 

  6. Liu X, Shen Z, Peng X et al (2022) A photo-assisted electrochemical-based demonstrator for green ammonia synthesis. J Energy Chem 68:826–834. https://doi.org/10.1016/j.jechem.2021.12.021

    Article  CAS  Google Scholar 

  7. Chhowalla M, Shin HS, Eda G et al (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275. https://doi.org/10.1038/nchem.1589

    Article  PubMed  Google Scholar 

  8. Manzeli S, Ovchinnikov D, Pasquier D et al (2017) 2D transition metal dichalcogenides. Nat Rev Mater 2:17033. https://doi.org/10.1038/natrevmats.2017.33

    Article  CAS  Google Scholar 

  9. Yu X, Guijarro N, Johnson M, Sivula K (2018) Defect Mitigation of Solution-Processed 2D WSe2 Nanoflakes for Solar-to-Hydrogen Conversion. Nano Lett 18:215–222. https://doi.org/10.1021/acs.nanolett.7b03948

    Article  CAS  PubMed  Google Scholar 

  10. Yang W, Park J, Kwon HC et al (2020) Solar water splitting exceeding 10% efficiency: Via low-cost Sb2Se3 photocathodes coupled with semitransparent perovskite photovoltaics. Energy Environ Sci 13:4362–4370. https://doi.org/10.1039/d0ee02959a

    Article  CAS  Google Scholar 

  11. Asadi M, Kumar B, Behranginia A et al (2014) Robust carbon dioxide reduction on molybdenum disulphide edges. Nat Commun 5:4470. https://doi.org/10.1038/ncomms5470

    Article  CAS  PubMed  Google Scholar 

  12. Patel AB, Machhi HK, Chauhan P et al (2019) Electrophoretically Deposited MoSe2/WSe2 Heterojunction from Ultrasonically Exfoliated Nanocrystals for Enhanced Electrochemical Photoresponse. ACS Appl Mater Interfaces 11:4093–4102. https://doi.org/10.1021/acsami.8b18177

    Article  CAS  PubMed  Google Scholar 

  13. Vanka S, Wang Y, Ghamari P et al (2018) A High Efficiency Si Photoanode Protected by Few-Layer MoSe2. Sol RRL 2:1–6. https://doi.org/10.1002/solr.201800113

    Article  CAS  Google Scholar 

  14. Yang W, Zhang X, Tilley SD (2021) Emerging Binary Chalcogenide Light Absorbers: Material Specific Promises and Challenges. Chem Mater 33:3467–3489. https://doi.org/10.1021/acs.chemmater.1c00741

    Article  CAS  Google Scholar 

  15. Kautek W, Gobrecht J, Gerischer H (1980) Applicability of Semiconducting Layered Materials for Electrochemical Solar Energy Conversion. Berichte der Bunsengesellschaft/Physical Chem Chem Phys 84:1034–1040. https://doi.org/10.1002/bbpc.19800841021

  16. Lewerenz HJ, Heller A, DiSalvo FJ (1980) Relationship between surface morphology and solar conversion efficiency of tungsten diselenide photoanodes. J Am Chem Soc 102:1877–1880. https://doi.org/10.1021/ja00526a019

    Article  CAS  Google Scholar 

  17. Fan FRF, White HS, Wheeler BL, Bard AJ (1980) Semiconductor Electrodes. 31. Photoelectrochemistry and Photovoltaic Systems with n- and p-Type WSe2 in Aqueous Solution. J Am Chem Soc 102:5142–5148. https://doi.org/10.1021/ja00536a002

    Article  CAS  Google Scholar 

  18. Kautek W, Gerischer H (1982) Anisotropic photocorrosion of n-type MoS2 MoSe2, and WSe2 single crystal surfaces: the role of cleavage steps, line and screw dislocations. Surf Sci 119:46–60. https://doi.org/10.1016/0039-6028(82)90186-8

    Article  CAS  Google Scholar 

  19. Abruna HD, Bard AJ (1982) Semiconductor Electrodes. 44. Photoelectrochemistry at Polycrystalline p-Type WSe2 Films. J Electrochem Soc 129:673–675. https://doi.org/10.1149/1.2123949

    Article  CAS  Google Scholar 

  20. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field in atomically thin carbon films. Science 306(80-):666–669. https://doi.org/10.1126/science.1102896

  21. Novoselov KS, Fal′ko VI, Colombo L et al (2012) A roadmap for graphene. Nature 490:192–200. https://doi.org/10.1038/nature11458

    Article  CAS  PubMed  Google Scholar 

  22. Mokaya R (2000) Ion Exchange | Novel Layered Materials: Non-Phosphates. In: Encyclopedia of Separation Science. pp 1610–1617

  23. Peng B, Ang PK, Loh KP (2015) Two-dimensional dichalcogenides for light-harvesting applications. Nano Today 10:128–137. https://doi.org/10.1016/j.nantod.2015.01.007

    Article  CAS  Google Scholar 

  24. Yu X, Sivula K (2017) Photogenerated Charge Harvesting and Recombination in Photocathodes of Solvent-Exfoliated WSe2. Chem Mater 29:6863–6875. https://doi.org/10.1021/acs.chemmater.7b02018

    Article  CAS  Google Scholar 

  25. Velický M, Toth PS (2017) From two-dimensional materials to their heterostructures: An electrochemist’s perspective. Appl Mater Today 8. https://doi.org/10.1016/j.apmt.2017.05.003

  26. Velický M, Bissett MA, Woods CR et al (2016) Photoelectrochemistry of Pristine Mono- and Few-Layer MoS2. Nano Lett 16:2023–2032. https://doi.org/10.1021/acs.nanolett.5b05317

    Article  CAS  PubMed  Google Scholar 

  27. Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2:16098. https://doi.org/10.1038/natrevmats.2016.98

    Article  CAS  Google Scholar 

  28. Naguib M, Kurtoglu M, Presser V et al (2011) Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv Mater 23:4248–4253. https://doi.org/10.1002/adma.201102306

  29. Zuo Y, Liu Y, Li J et al (2019) Solution-Processed Ultrathin SnS2-Pt Nanoplates for Photoelectrochemical Water Oxidation. ACS Appl Mater Interfaces 11:6918–6926. https://doi.org/10.1021/acsami.8b17622

    Article  CAS  PubMed  Google Scholar 

  30. Taniguchi T, Nurdiwijayanto L, Ma R, Sasaki T (2022) Chemically exfoliated inorganic nanosheets for nanoelectronics. Appl Phys Rev 9:021313. https://doi.org/10.1063/5.0083109

  31. Kaur N, Ghosh A, Ahmad M et al (2022) Increased visible light absorption and charge separation in 2D–3D In2S3-ZnO heterojunctions for enhanced photoelectrochemical water splitting. J Alloys Compd 903:164007. https://doi.org/10.1016/j.jallcom.2022.164007

  32. Mahala C, Sharma MD, Basu M (2019) ZnO@CdS heterostructures: An efficient photoanode for photoelectrochemical water splitting. New J Chem 43:7001–7010. https://doi.org/10.1039/c9nj01373c

    Article  CAS  Google Scholar 

  33. Frindt RF, Yoffe AD, Bowden FP (1963) Physical properties of layer structures : optical properties and photoconductivity of thin crystals of molybdenum disulphide. Proc R Soc London Ser A Math Phys Sci 273:69–83. https://doi.org/10.1098/rspa.1963.0075

    Article  Google Scholar 

  34. Yun WS, Han SW, Hong SC et al (2012) Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys Rev B - Condens Matter Mater Phys 85:33305. https://doi.org/10.1103/PhysRevB.85.033305

    Article  CAS  Google Scholar 

  35. Ye Y, Xian Y, Cai J et al (2019) Linear and Nonlinear Optical Properties of Few-Layer Exfoliated SnSe Nanosheets. Adv Opt Mater 7:1800579. https://doi.org/10.1002/adom.201800579

    Article  CAS  Google Scholar 

  36. Kim D, Park K, Shojaei F et al (2019) Thickness-dependent bandgap and electrical properties of GeP nanosheets. J Mater Chem A 7:16526–16532. https://doi.org/10.1039/c9ta04470a

    Article  CAS  Google Scholar 

  37. Ye W, He C, Asim Mushtaq M et al (2022) High Performance Cobalt-Vanadium Layered Double Hydroxide Nanosheets for Photoelectrochemical Reduction of Nitrogen. Eur J Inorg Chem. https://doi.org/10.1002/ejic.202200325

    Article  Google Scholar 

  38. Hernandez Y, Nicolosi V, Lotya M et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568. https://doi.org/10.1038/nnano.2008.215

    Article  CAS  PubMed  Google Scholar 

  39. Cai Y, Zhang G, Zhang Y-W (2014) Layer-dependent Band Alignment and Work Function of Few-Layer Phosphorene. Sci Rep 4:6677. https://doi.org/10.1038/srep06677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bonaccorso F, Lombardo A, Hasan T et al (2012) Production and processing of graphene and 2d crystals. Mater Today 15:564–589. https://doi.org/10.1016/S1369-7021(13)70014-2

    Article  CAS  Google Scholar 

  41. Ramanathan S, Gopinath SCB, Arshad MKM et al (2020) Nanoparticle synthetic methods: Strength and limitations. INC

  42. Ahmadi A, Zargar Shoushtari M (2019) Enhancing the photoelectrochemical water splitting performance of WS2 nanosheets by doping titanium and molybdenum via a low temperature CVD method. J Electroanal Chem 849:113361. https://doi.org/10.1016/j.jelechem.2019.113361

  43. Sherrell PC, Palczynski P, Sokolikova MS et al (2019) Large-Area CVD MoS2/WS2 Heterojunctions as a Photoelectrocatalyst for Salt-Water Oxidation. ACS Appl Energy Mater 2:5877–5882. https://doi.org/10.1021/acsaem.9b01008

    Article  CAS  Google Scholar 

  44. Wang J, Su J, Guo L (2016) Controlled Aqueous Growth of Hematite Nanoplate Arrays Directly on Transparent Conductive Substrates and Their Photoelectrochemical Properties. Chem An Asian J 11:2328–2334. https://doi.org/10.1002/asia.201600888

    Article  CAS  Google Scholar 

  45. Bonaccorso F, Bartolotta A, Coleman JN, Backes C (2016) 2D-Crystal-Based Functional Inks. Adv Mater 28:6136–6166. https://doi.org/10.1002/adma.201506410

    Article  CAS  PubMed  Google Scholar 

  46. Tóth PS, Szabó G, Janáky C (2021) Structural Features Dictate the Photoelectrochemical Activities of Two-Dimensional MoSe2 and WSe2 Nanostructures. J Phys Chem C 125:7701–7710. https://doi.org/10.1021/acs.jpcc.1c01265

    Article  CAS  Google Scholar 

  47. Kwon KC, Choi S, Hong K et al (2016) Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production. Energy Environ Sci 9:2240–2248. https://doi.org/10.1039/C6EE00144K

    Article  CAS  Google Scholar 

  48. Nicolosi V, Chhowalla M, Kanatzidis MG et al (2013) Liquid exfoliation of layered materials. Science (80-) 340:72–75. https://doi.org/10.1126/science.1226419

  49. Bellani S, Bartolotta A, Agresti A et al (2021) Solution-processed two-dimensional materials for next-generation photovoltaics. Chem Soc Rev 50:11870–11965. https://doi.org/10.1039/d1cs00106j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gómez H, Maldonado A, Asomoza R et al (1997) Characterization of indium-doped zinc oxide films deposited by pyrolytic spray with different indium compounds as dopants. Thin Solid Films 293:117–123. https://doi.org/10.1016/S0040-6090(96)09001-3

    Article  Google Scholar 

  51. Ding Q, Meng F, English CR et al (2014) Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2. J Am Chem Soc 136:8504–8507. https://doi.org/10.1021/ja5025673

    Article  CAS  PubMed  Google Scholar 

  52. Trung TN, Seo DB, Quang ND et al (2018) Enhanced photoelectrochemical activity in the heterostructure of vertically aligned few-layer MoS2 flakes on ZnO. Electrochim Acta 260:150–156. https://doi.org/10.1016/j.electacta.2017.11.089

    Article  CAS  Google Scholar 

  53. Hussain S, Hussain S, Waleed A et al (2017) Spray Pyrolysis Deposition of ZnFe2O4/Fe2O3 Composite Thin Films on Hierarchical 3-D Nanospikes for Efficient Photoelectrochemical Oxidation of Water. J Phys Chem C 121:18360–18368. https://doi.org/10.1021/acs.jpcc.7b05266

    Article  CAS  Google Scholar 

  54. Zhang F, Chen Y, Zhou W et al (2019) Hierarchical SnS2/CuInS2 Nanosheet Heterostructure Films Decorated with C60 for Remarkable Photoelectrochemical Water Splitting. ACS Appl Mater Interfaces 11:9093–9101. https://doi.org/10.1021/acsami.8b21222

    Article  CAS  PubMed  Google Scholar 

  55. Sopha H, Tesfaye AT, Zazpe R et al (2019) ALD growth of MoS2 nanosheets on TiO2 nanotube supports. FlatChem 17:100130. https://doi.org/10.1016/j.flatc.2019.100130

  56. Martella C, Melloni P, Cinquanta E et al (2016) Engineering the Growth of MoS2 via Atomic Layer Deposition of Molybdenum Oxide Film Precursor. Adv Electron Mater 2:1600330. https://doi.org/10.1002/aelm.201600330

    Article  CAS  Google Scholar 

  57. Hussain SA, Dey B, Bhattacharjee D, Mehta N (2018) Unique supramolecular assembly through Langmuir – Blodgett (LB) technique. Heliyon 4:e01038. https://doi.org/10.1016/j.heliyon.2018.e01038

  58. Oliveira ON, Caseli L, Ariga K (2022) The Past and the Future of Langmuir and Langmuir-Blodgett Films. Chem Rev 122:6459–6513. https://doi.org/10.1021/acs.chemrev.1c00754

    Article  CAS  PubMed  Google Scholar 

  59. Cunningham G, Khan U, Backes C et al (2013) Photoconductivity of solution-processed MoS2 films. J Mater Chem C 1:6899–6904. https://doi.org/10.1039/C3TC31402B

    Article  CAS  Google Scholar 

  60. Lee H, Yang W, Tan J et al (2020) High-Performance Phase-Pure SnS Photocathodes for Photoelectrochemical Water Splitting Obtained via Molecular Ink-Derived Seed-Assisted Growth of Nanoplates. ACS Appl Mater Interfaces 12:15155–15166. https://doi.org/10.1021/acsami.9b23045

    Article  CAS  PubMed  Google Scholar 

  61. Liu D, Wang J, Bian S et al (2020) Photoelectrochemical Synthesis of Ammonia with Black Phosphorus. Adv Funct Mater 30. https://doi.org/10.1002/adfm.202002731

  62. Moreira J, Vale AC, Alves NM (2021) Spin-coated freestanding films for biomedical applications. J Mater Chem B 9:3778–3799. https://doi.org/10.1039/d1tb00233c

    Article  CAS  PubMed  Google Scholar 

  63. David S, Mahadik MA, An GW et al (2018) Effect of directional light dependence on enhanced photoelectrochemical performance of ZnIn2S4/TiO2 binary heterostructure photoelectrodes. Electrochim Acta 276:223–232. https://doi.org/10.1016/j.electacta.2018.04.110

    Article  CAS  Google Scholar 

  64. Kim DH, Park JC, Park J et al (2021) Wafer-Scale Growth of a MoS2 Monolayer via One Cycle of Atomic Layer Deposition: An Adsorbate Control Method. Chem Mater 33:4099–4105. https://doi.org/10.1021/acs.chemmater.1c00729

    Article  CAS  Google Scholar 

  65. Bianca G, Zappia MI, Bellani S et al (2020) Liquid-phase exfoliated gese nanoflakes for photoelectrochemical- type photodetectors and photoelectrochemical water splitting. ACS Appl Mater Interfaces 12:48598–48613. https://doi.org/10.1021/acsami.0c14201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Carey T, Jones C, Le Moal F et al (2018) Spray-Coating Thin Films on Three-Dimensional Surfaces for a Semitransparent Capacitive-Touch Device. ACS Appl Mater Interfaces 10:19948–19956. https://doi.org/10.1021/acsami.8b02784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wong M, Ishige R, White KL et al (2014) Large-scale self-assembled zirconium phosphate smectic layers via a simple spray-coating process. Nat Commun 5:1–12. https://doi.org/10.1038/ncomms4589

    Article  CAS  Google Scholar 

  68. Habibi M, Ahmadian-Yazdi M-R, Eslamian M (2017) Optimization of spray coating for the fabrication of sequentially deposited planar perovskite solar cells. J Photonics Energy 7:022003. https://doi.org/10.1117/1.jpe.7.022003

  69. Lv X, Yu L, Li F et al (2021) Penta-MS2 (M = Mn, Ni, Cu/Ag and Zn/Cd) monolayers with negative Poisson’s ratios and tunable bandgaps as water-splitting photocatalysts. J Mater Chem A 9:6993–7004. https://doi.org/10.1039/d1ta00019e

    Article  CAS  Google Scholar 

  70. Torrisi SB, Singh AK, Montoya JH et al (2020) Two-dimensional forms of robust CO2 reduction photocatalysts. npj 2D Mater Appl 4:24. https://doi.org/10.1038/s41699-020-0154-y

  71. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. https://doi.org/10.1038/238037a0

    Article  CAS  PubMed  Google Scholar 

  72. Li D, Shi J, Li C (2018) Transition-Metal-Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review. Small 14:1–22. https://doi.org/10.1002/smll.201704179

    Article  CAS  Google Scholar 

  73. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535. https://doi.org/10.1039/c3cs60378d

    Article  CAS  PubMed  Google Scholar 

  74. Yang H, Nan C, Gao N et al (2022) Three-phase interface of SnO2 nanoparticles loaded on hydrophobic MoS2 enhance photoelectrochemical N2 reduction. Electrochim Acta 430:141086. https://doi.org/10.1016/j.electacta.2022.141086

  75. Yu Y, Huang S-Y, Li Y et al (2014) Layer-Dependent Electrocatalysis of MoS2 for Hydrogen Evolution. Nano Lett 14:553–558. https://doi.org/10.1021/nl403620g

    Article  CAS  PubMed  Google Scholar 

  76. Giri B, Masroor M, Yan T et al (2019) Balancing Light Absorption and Charge Transport in Vertical SnS2 Nanoflake Photoanodes with Stepped Layers and Large Intrinsic Mobility. Adv Energy Mater 9. https://doi.org/10.1002/aenm.201901236

  77. Zhao H, Zhang H, Liu G et al (2019) Ultra-small colloidal heavy-metal-free nanoplatelets for efficient hydrogen generation. Appl Catal B Environ 250:234–241. https://doi.org/10.1016/j.apcatb.2019.03.028

    Article  CAS  Google Scholar 

  78. Yang W, Park J, Kwon HC et al (2020) Solar water splitting exceeding 10% efficiency: Via low-cost Sb2Se3photocathodes coupled with semitransparent perovskite photovoltaics. Energy Environ Sci 13:4362–4370. https://doi.org/10.1039/d0ee02959a

    Article  CAS  Google Scholar 

  79. Park J, Yang W, Tan J et al (2020) Hierarchal Nanorod-Derived Bilayer Strategy to Enhance the Photocurrent Density of Sb2Se3 Photocathodes for Photoelectrochemical Water Splitting. ACS Energy Lett 5:136–145. https://doi.org/10.1021/acsenergylett.9b02486

    Article  CAS  Google Scholar 

  80. Kwak IH, Kwon IS, Lee JH et al (2021) Chalcogen-vacancy group VI transition metal dichalcogenide nanosheets for electrochemical and photoelectrochemical hydrogen evolution. J Mater Chem C 9:101–109. https://doi.org/10.1039/d0tc04715e

    Article  CAS  Google Scholar 

  81. McKone JR, Pieterick AP, Gray HB, Lewis NS (2013) Hydrogen Evolution from Pt/Ru-Coated p-Type WSe2 Photocathodes. J Am Chem Soc 135:223–231. https://doi.org/10.1021/ja308581g

    Article  CAS  PubMed  Google Scholar 

  82. Roy K, Maitra S, Ghosh D et al (2022) 2D-Heterostructure assisted activation of MoS2 basal plane for enhanced photoelectrochemical hydrogen evolution reaction. Chem Eng J 435:134963. https://doi.org/10.1016/j.cej.2022.134963

  83. Hu D, Xiang J, Zhou Q et al (2018) One-step chemical vapor deposition of MoS2 nanosheets on SiNWs as photocathodes for efficient and stable solar-driven hydrogen production. Nanoscale 10:3518–3525. https://doi.org/10.1039/c7nr09235k

    Article  CAS  PubMed  Google Scholar 

  84. Seo S, Kim S, Choi H et al (2019) Direct In Situ Growth of Centimeter-Scale Multi-Heterojunction MoS2/WS2/WSe2 Thin-Film Catalyst for Photo-Electrochemical Hydrogen Evolution. Adv Sci 6. https://doi.org/10.1002/advs.201900301

  85. Xu X, Liu Y, Zhu Y et al (2017) Fabrication of a Cu2O/g-C3N4/WS2 Triple-Layer Photocathode for Photoelectrochemical Hydrogen Evolution. ChemElectroChem 4:1498–1502. https://doi.org/10.1002/celc.201700014

    Article  CAS  Google Scholar 

  86. Huang X, Woo H, Lee D et al (2021) High-efficiency photon-capturing capability of two-dimensional sns nanosheets for photoelectrochemical cells. Catalysts 11:1–9. https://doi.org/10.3390/catal11020236

    Article  CAS  Google Scholar 

  87. Ma Z, Konze P, Küpers M et al (2020) Elucidation of the Active Sites for Monodisperse FePt and Pt Nanocrystal Catalysts for p-WSe2 Photocathodes. J Phys Chem C 124:11877–11885. https://doi.org/10.1021/acs.jpcc.0c01288

    Article  CAS  Google Scholar 

  88. Monny SA, Zhang L, Wang Z et al (2020) Fabricating highly efficient heterostructured CuBi2O4 photocathodes for unbiased water splitting. J Mater Chem A 8:2498–2504. https://doi.org/10.1039/c9ta10975g

    Article  CAS  Google Scholar 

  89. Xu XY, Dong XF, Bao ZJ et al (2017) Three electron channels toward two types of active sites in MoS2@Pt nanosheets for hydrogen evolution. J Mater Chem A 5:22654–22661. https://doi.org/10.1039/c7ta07241d

    Article  CAS  Google Scholar 

  90. Yu X, Prévot MS, Guijarro N, Sivula K (2015) Self-assembled 2D WSe2 thin films for photoelectrochemical hydrogen production. Nat Commun 6. https://doi.org/10.1038/ncomms8596

  91. Chaudhary P, Ingole PP (2020) In-Situ solid-state synthesis of 2D/2D interface between Ni/NiO hexagonal nanosheets supported on g-C3N4 for enhanced photo-electrochemical water splitting. Int J Hydrogen Energy 45:16060–16070. https://doi.org/10.1016/j.ijhydene.2020.04.011

    Article  CAS  Google Scholar 

  92. Tayebi M, Masoumi Z, Kolaei M et al (2022) Highly efficient and stable WO3/MoS2-MoOx photoanode for photoelectrochemical hydrogen production; a collaborative approach of facet engineering and P-N junction. Chem Eng J 446:136830. https://doi.org/10.1016/j.cej.2022.136830

  93. Li H, Yang C, Wang X et al (2020) Mixed 3D/2D dimensional TiO2 nanoflowers/MoSe2 nanosheets for enhanced photoelectrochemical hydrogen generation. J Am Ceram Soc 103:1187–1196. https://doi.org/10.1111/jace.16807

    Article  CAS  Google Scholar 

  94. Ghasemi F, Hassanpour Amiri M (2021) Facile in situ fabrication of rGO/MoS2 heterostructure decorated with gold nanoparticles with enhanced photoelectrochemical performance. Appl Surf Sci 570:151228. https://doi.org/10.1016/j.apsusc.2021.151228

  95. Meng L, Zhou X, Wang S et al (2019) A Plasma-Triggered O−S Bond and P−N Junction Near the Surface of a SnS2 Nanosheet Array to Enable Efficient Solar Water Oxidation. Angew Chemie Int Ed 58:16668–16675. https://doi.org/10.1002/anie.201910510

    Article  CAS  Google Scholar 

  96. Karmakar K, Maity D, Pal D et al (2020) Photo-Induced Exciton Dynamics and Broadband Light Harvesting in ZnO Nanorod-Templated Multilayered Two-Dimensional MoS2/MoO3 Photoanodes for Solar Fuel Generation. ACS Appl Nano Mater 3:1223–1231. https://doi.org/10.1021/acsanm.9b01972

    Article  CAS  Google Scholar 

  97. Mahala C, Sharma MD, Basu M (2020) Near-Field and Far-Field Plasmonic Effects of Gold Nanoparticles Decorated on ZnO Nanosheets for Enhanced Solar Water Splitting. ACS Appl Nano Mater 3:1153–1165. https://doi.org/10.1021/acsanm.9b01678

    Article  CAS  Google Scholar 

  98. Masoumi Z, Tayebi M, Kolaei M et al (2021) Simultaneous Enhancement of Charge Separation and Hole Transportation in a W:α-Fe2O3/MoS2 Photoanode: A Collaborative Approach of MoS2 as a Heterojunction and W as a Metal Dopant. ACS Appl Mater Interfaces 13:39215–39229. https://doi.org/10.1021/acsami.1c08139

  99. Pi Y, Liu B, Li Z et al (2019) TiO2 nanorod arrays decorated with exfoliated WS2 nanosheets for enhanced photoelectrochemical water oxidation. J Colloid Interface Sci 545:282–288. https://doi.org/10.1016/j.jcis.2019.03.041

    Article  CAS  PubMed  Google Scholar 

  100. Mahala C, Sharma MD, Basu M (2020) ZnO Nanosheets Decorated with Graphite-Like Carbon Nitride Quantum Dots as Photoanodes in Photoelectrochemical Water Splitting. ACS Appl Nano Mater 3:1999–2007. https://doi.org/10.1021/acsanm.0c00081

    Article  CAS  Google Scholar 

  101. Masoumi Z, Tayebi M, Kolaei M, Lee BK (2022) Unified surface modification by double heterojunction of MoS2 nanosheets and BiVO4 nanoparticles to enhance the photoelectrochemical water splitting of hematite photoanode. J Alloys Compd 890:161802. https://doi.org/10.1016/j.jallcom.2021.161802

  102. Masoumi Z, Tayebi M, Lee BK (2021) Ultrasonication-assisted liquid-phase exfoliation enhances photoelectrochemical performance in α-Fe2O3/MoS2 photoanode. Ultrason Sonochem 72:105403. https://doi.org/10.1016/j.ultsonch.2020.105403

  103. Pulipaka S, Koushik AKS, Boni N et al (2019) Tin disulfide based ternary composites for visible light driven photoelectrochemical water splitting. Int J Hydrogen Energy 44:11584–11592. https://doi.org/10.1016/j.ijhydene.2019.03.135

    Article  CAS  Google Scholar 

  104. Zhang S, Liu Y, Feng M et al (2021) Leaf-like MXene nanosheets intercalated TiO2 nanorod array photoelectrode with enhanced photoelectrochemical performance. J Power Sources 484:229236. https://doi.org/10.1016/j.jpowsour.2020.229236

  105. Yin H, Wang Y, Ma L et al (2022) Effect of surface-deposited Ti3C2Tx MXene on the photoelectrochemical water-oxidation performance of iron-doped titania nanorod array. Chem Eng J 431:134124. https://doi.org/10.1016/j.cej.2021.134124

  106. Zhong C, Shang Z, Zhao C et al (2022) Co-Catalyst Ti3C2Tx MXene-Modified ZnO Nanorods Photoanode for Enhanced Photoelectrochemical Water Splitting. Top Catal. https://doi.org/10.1007/s11244-022-01619-0

    Article  Google Scholar 

  107. Seo DB, Dongquoc V, Jayarathna RA et al (2022) Rational heterojunction design of 1D WO3 nanorods decorated with vertical 2D MoS2 nanosheets for enhanced photoelectrochemical performance. J Alloys Compd 911:165090. https://doi.org/10.1016/j.jallcom.2022.165090

  108. Li L, Shi H, Yu H et al (2021) Ultrathin MoSe2 nanosheet anchored CdS-ZnO functional paper chip as a highly efficient tandem Z-scheme heterojunction photoanode for scalable photoelectrochemical water splitting. Appl Catal B Environ 292:120184. https://doi.org/10.1016/j.apcatb.2021.120184

  109. Suryawanshi MP, Ghorpade UV, Shin SW et al (2018) Facile, Room Temperature, Electroless Deposited (Fe1-x, Mnx)OOH Nanosheets as Advanced Catalysts: The Role of Mn Incorporation. Small 14:1–8. https://doi.org/10.1002/smll.201801226

    Article  CAS  Google Scholar 

  110. Kong Z, Zhang J, Wang H et al (2020) Constructing 1D/2D heterojunction photocatalyst from FeSe2 nanorods and MoSe2 nanoplates with high photocatalytic and photoelectrochemical performance. Int J Energy Res 44:1205–1217. https://doi.org/10.1002/er.5014

    Article  CAS  Google Scholar 

  111. Ratnayake SP, Ren J, Murdoch BJ et al (2022) Nanostructured Electrodes Based on Two-Dimensional SnO2 for Photoelectrochemical Water Splitting. ACS Appl Energy Mater 5:10359–10365. https://doi.org/10.1021/acsaem.2c01087

    Article  CAS  Google Scholar 

  112. Zhang D, Yang S, Fang X et al (2022) In situ localization of BiVO4 onto two-dimensional MXene promoting photoelectrochemical nitrogen reduction to ammonia. Chinese Chem Lett 33:4669–4674. https://doi.org/10.1016/j.cclet.2022.02.001

    Article  CAS  Google Scholar 

  113. Bai Y, Bai H, Qu K et al (2019) In-situ approach to fabricate BiOI photocathode with oxygen vacancies: Understanding the N2 reduced behavior in photoelectrochemical system. Chem Eng J 362:349–356. https://doi.org/10.1016/j.cej.2019.01.051

    Article  CAS  Google Scholar 

  114. Ye W, Arif M, Fang X et al (2019) Efficient Photoelectrochemical Route for the Ambient Reduction of N2 to NH3 Based on Nanojunctions Assembled from MoS2 Nanosheets and TiO2. ACS Appl Mater Interfaces 11:28809–28817. https://doi.org/10.1021/acsami.9b06596

    Article  CAS  PubMed  Google Scholar 

  115. Chen Z, Forman AJ, Jaramillo TF (2013) Bridging the gap between bulk and nanostructured photoelectrodes: The impact of surface states on the electrocatalytic and photoelectrochemical properties of MoS2. J Phys Chem C 117:9713–9722. https://doi.org/10.1021/jp311375k

    Article  CAS  Google Scholar 

  116. Brownson DAC, Munro LJ, Kampouris DK, Banks CE (2011) Electrochemistry of graphene: not such a beneficial electrode material? RSC Adv 1:978–988. https://doi.org/10.1039/C1RA00393C

    Article  CAS  Google Scholar 

  117. Velický M, Bradley DF, Cooper AJ et al (2014) Electron transfer kinetics on mono- and multilayer graphene. ACS Nano 8:10089–10100. https://doi.org/10.1021/nn504298r

    Article  CAS  PubMed  Google Scholar 

  118. Todt MA, Isenberg AE, Nanayakkara SU et al (2018) Single-Nanoflake Photo-Electrochemistry Reveals Champion and Spectator Flakes in Exfoliated MoSe2 Films. J Phys Chem C 122:6539–6545. https://doi.org/10.1021/acs.jpcc.7b12715

    Article  CAS  Google Scholar 

  119. Lewerenz HJ, Gerischer H, Lübke M (1984) Photoelectrochemistry of WSe2 Electrodes: Comparison of Stepped and Smooth Surfaces. J Electrochem Soc 131:100–104. https://doi.org/10.1149/1.2115467

    Article  CAS  Google Scholar 

  120. Velazquez JM, John J, Esposito DV et al (2016) A scanning probe investigation of the role of surface motifs in the behavior of p-WSe2 photocathodes. Energy Environ Sci 9:164–175. https://doi.org/10.1039/C5EE02530C

    Article  CAS  Google Scholar 

  121. Velický M, Bissett MA, Toth PS et al (2015) Electron transfer kinetics on natural crystals of MoS2 and graphite. Phys Chem Chem Phys 17:17844–17853. https://doi.org/10.1039/c5cp02490k

    Article  PubMed  Google Scholar 

  122. Toth PS, Velický M, Bissett MA et al (2016) Asymmetric MoS2/Graphene/Metal Sandwiches: Preparation, Characterization, and Application. Adv Mater 28:8256–8264. https://doi.org/10.1002/adma.201600484

    Article  CAS  PubMed  Google Scholar 

  123. Toth PS, Valota AT, Velický M et al (2014) Electrochemistry in a drop: A study of the electrochemical behaviour of mechanically exfoliated graphene on photoresist coated silicon substrate. Chem Sci 5:582–589. https://doi.org/10.1039/c3sc52026a

    Article  CAS  Google Scholar 

  124. Eisenberg D (2015) Imaging the Anisotropic Reactivity of a Tungsten Diselenide Photocathode. ChemElectroChem 2:1259–1263. https://doi.org/10.1002/celc.201500103

  125. Hill JW, Hill CM (2019) Directly Mapping Photoelectrochemical Behavior within Individual Transition Metal Dichalcogenide Nanosheets. Nano Lett 19:5710–5716. https://doi.org/10.1021/acs.nanolett.9b02336

    Article  CAS  PubMed  Google Scholar 

  126. Bentley CL, Kang M, Maddar FM et al (2017) Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS2): basal vs. edge plane activity. Chem Sci 8:6583–6593. https://doi.org/10.1039/C7SC02545A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tao B, Unwin PR, Bentley CL (2020) Nanoscale Variations in the Electrocatalytic Activity of Layered Transition-Metal Dichalcogenides. J Phys Chem C 124:789–798. https://doi.org/10.1021/acs.jpcc.9b10279

    Article  CAS  Google Scholar 

  128. Edwards MA, Bertoncello P, Unwin PR (2009) Slow Diffusion Reveals the Intrinsic Electrochemical Activity of Basal Plane Highly Oriented Pyrolytic Graphite Electrodes. J Phys Chem C 113:9218–9223. https://doi.org/10.1021/jp8092918

    Article  CAS  Google Scholar 

  129. Zhou W, Zou X, Najmaei S et al (2013) Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. Nano Lett 13:2615–2622. https://doi.org/10.1021/nl4007479

    Article  CAS  PubMed  Google Scholar 

  130. Jaramillo TF, Jørgensen KP, Bonde J et al (2007) Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science (80-) 317:100–102. https://doi.org/10.1126/science.1141483

  131. Tóth PS, Szabó G, Bencsik G et al (2022) Peeling off the surface: Pt-decoration of WSe2 nanoflakes results in exceptional photoelectrochemical HER activity. SusMat 2:749–760. https://doi.org/10.1002/sus2.86

    Article  CAS  Google Scholar 

  132. Bozheyev F, Harbauer K, Ellmer K (2017) Highly (001)-textured p-type WSe2 Thin Films as Efficient Large-Area Photocathodes for Solar Hydrogen Evolution. Sci Rep 7:16003. https://doi.org/10.1038/s41598-017-16283-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yu X, Rahmanudin A, Jeanbourquin XA et al (2017) Hybrid heterojunctions of solution-processed semiconducting 2D transition metal dichalcogenides. ACS Energy Lett 2:524–531. https://doi.org/10.1021/acsenergylett.6b00707

    Article  CAS  Google Scholar 

  134. Bi W, Wu C, Xie Y (2018) Atomically Thin Two-Dimensional Solids: An Emerging Platform for CO2 Electroreduction. ACS Energy Lett 3:624–633. https://doi.org/10.1021/acsenergylett.7b01343

    Article  CAS  Google Scholar 

  135. Hassan MA, Kim MW, Johar MA et al (2019) Transferred monolayer MoS2 onto GaN for heterostructure photoanode: Toward stable and efficient photoelectrochemical water splitting. Sci Rep 9. https://doi.org/10.1038/s41598-019-56807-y

  136. Yin Z, Chen B, Bosman M et al (2014) Au nanoparticle-modified MoS2 nanosheet-based photoelectrochemical cells for water splitting. Small 10:3537–3543. https://doi.org/10.1002/smll.201400124

    Article  CAS  PubMed  Google Scholar 

  137. Ali A, Mangrio FA, Chen X et al (2019) Ultrathin MoS2 nanosheets for high-performance photoelectrochemical applications: Via plasmonic coupling with Au nanocrystals. Nanoscale 11:7813–7824. https://doi.org/10.1039/c8nr10320h

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research reported in this paper is part of project no. TKP2021-NVA-19, has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NVA funding scheme for financial support. This paper was also supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. Q.Q.B. would like to thank the Stipendium Hungaricum scholarship and the China Scholarship Council for a PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Péter S. Tóth or Csaba Janáky.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The adapted figures are used with permission of the publishers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tóth, P.S., Qianqian, B. & Janáky, C. Photoelectrochemistry of two-dimensional and layered materials: a brief review. J Solid State Electrochem 27, 1701–1715 (2023). https://doi.org/10.1007/s10008-023-05503-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05503-z

Keywords

Navigation