Skip to main content
Log in

Preparation and characterization of binder-free electrodes based on PEDOT and perovskites type La(1-x)SrxMnO3 for use in supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Positive electrodes for pseudocapacitators are commonly assembled with a pseudocapacitive material, an electrically conductive material, and a binder. Generally, binders present high electrical resistance, shown as losses in the electrode efficiency. Therefore, there is a need to develop new electrode materials with better electrical conduction properties. This paper proposes to replace the classical electrical binder-conductor system, in La0.7Sr0.3MnO3 (LSMO) and LaMnO3 (LMO) pseudocapacitive electrodes, with the Poly(3,4-ethylenedioxythiophene) PEDOT, a polymer with the double function of conductivity and binding. In this work, different LSMO and LMO electrode materials with PEDOT were synthesized by cyclic voltammetry at different ratios (5, 10, 15, 20, 30%wt) of pseudocapacitive material with respect to the conductive polymer. The LSMO/PEDOT type materials with a ratio of 15%wt showed the highest capacitance with a value around 116 F/g. Also, a high stability material was obtained as shown in charge–discharge curves, with efficiencies of 94% at 272 mA/s∙g discharge current cycles. Additionally, a cyclability test was performed with 5000 cycles showing a coulombic efficiency of 87% and only 10% of capacitance loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Libich J, Máca J, Vondrák J, Čech O, Sedlaříková M (2018) Supercapacitors: properties and applications”. J Energy Storage 17:224–227

    Article  Google Scholar 

  2. Ehsani A, Kowsari E, Boorboor Ajdari F, Safari R, Mohammad Shiri H (2018) Enhanced pseudocapacitance performance of conductive polymer electroactive film in the presence of green compound of 1-Butyl-3-methylimidazolium chloride: electrochemical and DFT study. J Colloid Interface Sci 512:151–157

    Article  CAS  PubMed  Google Scholar 

  3. Choi C, Ashby DS, Butts DM, DeBlock RH, Wei Q, Lau J, Dunn B (2020) Achieving high energy density and high power density with pseudocapacitive materials. Nat Rev Mater 5:5–19

    Article  Google Scholar 

  4. Da Silva LM, Cesar R, Moreira CMR, Santos JHM, De Souza LG, Pires BM, Vicentini R, Nunes W, Zanin H (2020) Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials. Energy Storage Mater 27:555–590

    Article  Google Scholar 

  5. Ibanez JG, Rincón ME, Gutierrez-Granados S, Chahma M, Jaramillo-Quintero OA, Frontana-Uribe BA (2018) Conducting polymers in the fields of energy, environmental remediation, and chemical-chiral sensors. Chem Rev 118:4731–4816

    Article  CAS  PubMed  Google Scholar 

  6. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  CAS  Google Scholar 

  7. Du HY, Liu XX, Ren Z, Liu PP (2018) Capacitance characteristic of PEDOT electrodeposited on different substrates. J Solid State Electrochem 22:3947–3954

    Article  CAS  Google Scholar 

  8. Mohd Abdah MAA, Azman NHN, Kulandaivalu S, Sulaiman Y (2020) Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater Des 186:108199

    Article  CAS  Google Scholar 

  9. Deshagani S, Krushnamurty K, Deepa M (2018) High energy density, robust and economical supercapacitor with poly(3,4-ethylenedioxythiophene)-CO2 activated rice husk derived carbon hybrid electrodes. Mater Today Energy 9:137–153

    Article  Google Scholar 

  10. Chodankar NR, Pham HD, Nanjundan AK, Fernando JFS, Jayaramulu K, Golberg D, Han YK, Dubal DP (2020) True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors. Small 16:2002806

    Article  CAS  Google Scholar 

  11. Mefford JT, Hardin WG, Dai S, Johnston KP, Stevenson KJ (2014) Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nature 13:726–732

    Article  CAS  Google Scholar 

  12. Lang X, Mo H, Hu X, Tian H (2017) Supercapacitor performance of perovskite La(1–x)xSrxMnO3. J. Chem. Soc. Dalton trans 46:13720–13730

    Article  CAS  PubMed  Google Scholar 

  13. Rezaie E, Hajalilou A, Su Y (2021) Perovskites for supercapacitors. Wiley, Hoboken

    Book  Google Scholar 

  14. Navin K, Kurchania R (2020) A comparative study of the structural, magnetic transport and electrochemical properties of La0.7Sr0.3MnO3 synthesized by different chemical routes. Appl Phys A 126:1–13

    Article  Google Scholar 

  15. Roy A, Cancino-Gordillo FE, Saha S, Pal U, Das S (2021) Performance of asymmetric supercapacitor fabricated with perovskite-type Sr2+-incorporated LaMnO3 (La0.7Sr0.3MnO3) nanostructures in neutral 1M Na2SO4 aqueous electrolyte. Int J Energy Res 45:14021–14033

    Article  CAS  Google Scholar 

  16. Meng Z, Xu J, Yu P, Hu X, Wu Y, Zhang Q, Li Y, Qiao L, Zeng Y, Tian H (2020) Double perovskite La2CoMnO6 hollow spheres prepared by template impregnation for high-performance supercapacitors. Chem Eng J 400:125966

    Article  CAS  Google Scholar 

  17. Wang Y, Xia Y (2013) Recent progress in supercapacitors: from materials design to system construction. Adv Mater 25:5336–5342

    Article  CAS  PubMed  Google Scholar 

  18. Fransson L, Eriksson T, Edström K, Gustafsson T, Thomas JO (2001) Influence of carbon black and binder on Li-ion batteries. J Power Sources 101:1–9

    Article  CAS  Google Scholar 

  19. Wang HQ, Yin J, Li Q, Yin P (2014) Current progress on the preparation of binders for electrochemical supercapacitors. Postdoc 2:31–38

    Google Scholar 

  20. Zhu Z, Tang S, Yuan J, Qin X, Deng Y, Qu R, Haarberg GM (2016) Effects of various binders on supercapacitor performances. Int J Electrochem Sci 11:8270–8279

    Article  CAS  Google Scholar 

  21. Azman NHN, Mamat Mat Nazir MS, Ngee H, Sulaiman Y (2018) Graphene-based ternary composites for supercapacitors. Int J Energy Res 42:2104–2116

  22. Mendoza R, Oliva J, Padmasree KP, Mtz-Enriquez AI, Hayat A, Rodriguez-Gonzalez V (2022) A sustainable avocado-peel based electrode for efficient graphene supercapacitors: enhancement of capacitance by using Sr doped LaMnO3 perovskites. Ceram Int 48:30967–30977

    Article  CAS  Google Scholar 

  23. Garces L, Lopez-Medina M, Padmasree KP, Mtz-Enriquez AI, Medina-Velazquez DY, Flores-Zuñiga H, Oliva J (2022) A parchment-like supercapacitor made with sustainable graphene electrodes and its enhanced capacitance by incorporation of the LaSrCoO3 Perovskite. ChemistrySelect 7:36

    Article  Google Scholar 

  24. Sun X, Meng Z, Hao Z, Du Z, Xu J, Nan H, Shi W, Zeng F, Hu X, Tian H (2023) Efficient fabrication of flower-like core–shell nanochip arrays of lanthanum manganate and nickel cobaltate for high-performance supercapacitors. J Colloid Interface Sci 630:618–628

    Article  CAS  PubMed  Google Scholar 

  25. Ha DH, Islam MA, Robinson RD (2012) Binder-free and carbon-free nanoparticle batteries: a method for nanoparticle electrodes without polymeric binders or carbon black. Nano Lett 12:5122–5130

    Article  CAS  PubMed  Google Scholar 

  26. Kubarkov AV, Drozhzhin OA, Karpushkin EA, Stevenson KJ, Antipov EV (2019) Poly (3,4-ethylenedioxythiophene): poly(styrenesulfonic acid)– polymer composites as functional cathode binders for high power LiFePO4 batteries. Colloid Polym Sci 297:475–484

    Article  CAS  Google Scholar 

  27. Tang P, Han L, Zhang L, Wang S, Feng W, Xu G, Zhang L (2015) Controlled construction of hierarchical nanocomposites consisting of MnO2 and PEDOT for high-performance supercapacitor applications. ChemElectroChem 2:949–957

    Article  CAS  Google Scholar 

  28. Lang X, Zhang H, Xue X, Li C, Sun X, Liu Z, Nan H, Hu X, Tian H (2018) Rational design of La0.85Sr0.15MnO3 @NiCo2O4 core–shell architecture supported on Ni foam for high performance supercapacitors. J Power Sources 402:213–220

    Article  CAS  Google Scholar 

  29. Ali A, Hameed I, Ammar M, Mujahid R, Mirza S (2021) Enhanced rate capability for asymmetric supercapacitors by binder-free Zn-Ni-Co oxide nanoflakes on Ni foam. J Energy Storage 37:102472

    Article  Google Scholar 

  30. Das PR, Komsiyska L, Osters O, Wittstock G (2015) PEDOT:PSS as a functional binder for cathodes in lithium ion batteries. J Electrochem Soc 162:A674–A678

    Article  CAS  Google Scholar 

  31. Liang K, Gu T, Cao Z, Tang X, Hu W, Wei B (2014) In situ synthesis of SWNTs@MnO2/polypyrrole hybrid film as binder-free supercapacitor electrode. Nano Energy 9:245–251

    Article  CAS  Google Scholar 

  32. Sengodu P, Deshmukh AD (2015) Conducting polymers and their inorganic composites for advanced Li-ion batteries: a review. RSC Adv 5:42109–42130

    Article  CAS  Google Scholar 

  33. Shi Y, Peng L, Ding Y, Zhao Y, Yu G (2015) Nanostructured conductive polymers for advanced energy storage. Chem Soc Rev 44:6684–6696

    Article  CAS  PubMed  Google Scholar 

  34. Shafi PM, Ganesh V, Bose AC (2018) LaMnO3/RGO/PANI ternary nanocomposites for supercapacitor electrode application and their outstanding performance in all-solid-state asymmetrical device design. ACS Appl Energy Mater 1:2802–2812

    Article  CAS  Google Scholar 

  35. Sun X, Hao Z, Zeng F, Xu J, Nan H, Meng ZS, Yang J, Shi W, Zeng Y, Hu X, Tian H (2022) Coaxial cable-like dual conductive channel strategy in polypyrrole coated perovskite lanthanum manganite for high-performance asymmetric supercapacitors. J Colloid Interface Sci 610:601–609

    Article  CAS  PubMed  Google Scholar 

  36. Khazaei M, Malekzadeh A, Amini F, Mortazavi Y, Khodadadi A (2010) Effect of citric acid concentration as emulsifier on perovskite phase formation of nano-sized SrMnO3 and SrCoO3 samples. Cryst Res Technol 45:1064–1068

    Article  CAS  Google Scholar 

  37. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kumari S, Mottaghi N, Huang CY, Trappen R, Bhandari G, Yousefi S, Cabrera G, Seehra MS, Holcomb MB (2020) Effects of oxygen modification on the structural and magnetic properties of highly epitaxial La0.7Sr0.3MnO3 (LSMO) thin films. Sci Rep 10:1–11

    Article  Google Scholar 

  39. Laohana P, Tanapongpisit N, Kim S, Eknapakul T, Fongkaew I, Supruangnet R, Nakajima H, Meevasana W, Bark CW, Saenrang W (2021) Particle size dependence of the electrochemical properties of SrMnO3 supercapacitor electrodes. J Solid State Electrochemistry 25:1121–1129

    Article  CAS  Google Scholar 

  40. Rajesh M, Manikandan R, Kim BC, Becuwe M, Yu KH, Raj CJ (2020) Electrochemical polymerization of chloride doped PEDOT hierarchical porous nanostructure on graphite as a potential electrode for high performance supercapacitor. Electrochim Acta 354:136669

    Article  CAS  Google Scholar 

  41. Ates M (2011) Review study of electrochemical impedance spectroscopy and equivalent electrical circuits of conducting polymers on carbon surfaces. Prog Org Coat 71:1–10

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gutiérrez Granados.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, J.E.R., Calzonci, D.M.L., Soto, C.L.G. et al. Preparation and characterization of binder-free electrodes based on PEDOT and perovskites type La(1-x)SrxMnO3 for use in supercapacitors. J Solid State Electrochem 27, 3149–3162 (2023). https://doi.org/10.1007/s10008-023-05450-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05450-9

Keywords

Navigation