Skip to main content

Advertisement

Log in

Charge–discharge performances of Li–S battery using NaI–NaBH4–LiI solid electrolyte

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, Li–S batteries were fabricated using 9(15NaI∙NaBH4)∙LiI as the solid electrolyte, and their charge–discharge properties were investigated. The composition of the cathode, consisting of sulfur, solid electrolyte, and carbon, was optimized from the viewpoint of microstructure and charge–discharge performance. For the cathode composite with sulfur, solid electrolyte, and carbon in a weight ratio of 2:7:1, an initial discharge capacity of 1480 mAh/g was obtained, and 760 mAh/g was maintained for the subsequent cycles at 0.006 C. The discharge capacities did not change significantly when the discharge rate was increased to 0.03 C. This indicates that the overvoltage originates mainly from the IR drop of the solid electrolyte at a low rate. On the other hand, the discharge capacity was dropped to 380 mAh/g at 0.06 C, which could be due to insufficient electronic conduction in the composite and/or the homogeneity of the composite. This is a pioneering study of the functioning of a Na-compound-based Li+ conductor as a solid electrolyte for Li–S batteries. The results of this study show the potential of the all-solid-state Li–S battery using the Li+-doped Na compound as the solid electrolyte and strongly indicate that a suitable solid electrolyte for Li–S batteries can be developed from the existing Na compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ji X, Nazar LF (2010) J Mater Chem 20:9821–9826

    Article  CAS  Google Scholar 

  2. Rauh RD, Shuker FS, Marston JM, Brummer SB (1977) J Inorg Nucl Chem 39:1761–1766

    Article  CAS  Google Scholar 

  3. Zhou W, Chen H, Yu Y, Wang D, Cui Z, Disalvo FJ, Abruña HD (2013) ACS Nano 7:8801–8808

    Article  CAS  PubMed  Google Scholar 

  4. Li Y, Guo XT, Zhang ST, Pang H (2021) Rare Met 40:417–424

    Article  Google Scholar 

  5. Zhang K, Chen Z, Ning R, Xi S, Tang W, Du Y, Liu C, Ren Z, Chi X, Bai M, Shen C, Li X, Wang X, Zhao X, Leng K, Pennycook SJ, Li H, Xu H, Loh KP et al (2019) ACS Appl Mater Interfaces 11:25147–25154

    Article  CAS  PubMed  Google Scholar 

  6. Liao J, Liu Z, Liu X, Ye Z (2018) J Phys Chem C 122:25917–25929

    Article  CAS  Google Scholar 

  7. Wang ZY, Wang L, Liu S, Li GR, Gao XP (2019). Adv Funct Mater. https://doi.org/10.1002/adfm.201901051

    Article  CAS  Google Scholar 

  8. Yang T, Qian T, Liu J, Xu N, Li Y, Grundish N, Yan C, Goodenough JB (2019) ACS Nano 13:9067–9073

    Article  CAS  PubMed  Google Scholar 

  9. Pan H, Cheng Z, He P, Zhou H (2020) Energy Fuels 34:11942–11961

    Article  CAS  Google Scholar 

  10. Umeshbabu E, Zheng B, Yang Y (2019) Recent progress in all-solid-state lithium−sulfur batteries using high Li-ion conductive solid electrolytes. Electrochem Energ Rev. https://doi.org/10.1007/s41918-019-00029-3

    Article  CAS  Google Scholar 

  11. Yang Q, Deng N, Zhao Y, Gao L, Cheng B, Kang W (2023) Chem Eng J 451:38532. https://doi.org/10.1016/j.cej.2022.138532

  12. Yi J, Chen L, Liu Y, Geng H, Fan LZ (2019) ACS Appl Mater Interfaces 11:36774–36781

    Article  CAS  PubMed  Google Scholar 

  13. Ahmad N, Zhou L, Faheem M, Tufail MK, Yang L, Chen R, Zhou Y, Yang W (2020) ACS Appl Mater Interfaces 12:21548–21558

    Article  CAS  PubMed  Google Scholar 

  14. Machida N, Kobayashi K, Nishikawa Y, Shigematsu T (2004) Solid State Ionics 175:247–250

    Article  CAS  Google Scholar 

  15. Kinoshita S, Okuda K, Machida N, Naito M, Sigematsu T (2014) Solid State Ionics 256:97–102

    Article  CAS  Google Scholar 

  16. Kim PJ, Narayanan S, Xue J, Thangadurai V, Pol VG (2018) ACS Appl Energy Mater 1:3733–3741

    Article  CAS  Google Scholar 

  17. Lu Y, Huang X, Song Z, Rui K, Wang Q, Gu S, Yang J, Xiu T, Badding ME, Wen Z (2018) Energy Storage Mater 15:282–290

    Article  Google Scholar 

  18. Shaomao X, Dennis MW, Lei Z, Greg HT, Changwei W, Zhaohui M, Chaoji C, Wei L, Jiaqi D, Yudi K, Emily HM, Kun F, Yunhui G, Eric WD, Liangbing H (2018) Energy Storage Mater 15:458–464

    Article  Google Scholar 

  19. Din MMU, Murugan R (2018) Electrochem commun 93:109–113

    Article  CAS  Google Scholar 

  20. Das S, Ngene P, Norby P, Vegge T, de Jongh PE, Blanchard D (2016) J Electrochem Soc 163:A2029–A2034

    Article  CAS  Google Scholar 

  21. Miyazaki R, Sakaguchi I, Hihara T (2021) J Solid State Electrochem 25:1927–1936

    Article  CAS  Google Scholar 

  22. Miyazaki R, Hihara T (2022) Mater Lett 312:131646

    Article  CAS  Google Scholar 

  23. Choi YS, Lee YS, Choi DJ, Chae KH, Oh KH, Cho YW (2017) J Phys Chem C 121:26209–26215

    Article  CAS  Google Scholar 

  24. Shannon RD (1976) Acta Cryst A32:751–767

    Article  CAS  Google Scholar 

  25. Maekawa H, Matsuo M, Takamura H, Ando M, Noda Y, Karahashi T, Orimo S (2009) J Am Chem Soc 131:894–895

    Article  CAS  PubMed  Google Scholar 

  26. Liang CC (1973) J Electrochem Soc 120:1289

    Article  CAS  Google Scholar 

  27. Maier J (1987) Solid State Ionics 23:59–67

    Article  CAS  Google Scholar 

  28. Ji X, Lee KT, Nazar LF (2009) Nat Mater 8:500–506

    Article  CAS  PubMed  Google Scholar 

  29. Miyazaki R, Hihara T (2019) J Power Sources 427:15–20

    Article  CAS  Google Scholar 

  30. Sakuda A, Takeuchi T, Shikano M, Sakaebe H, Kobayashi H (2016) Front Energy Res 4:1–7

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the JSPS KAKENHI grant numbers JP22H02179, JP22K04871, and the Naito Science & Engineering Foundation. The FIB-SEM observation and EDS analyses were supported by the Equipment Sharing Division, Organization for Co-Creation Research and Social Contributions, Nagoya Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reona Miyazaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1731 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyazaki, R., Onishi, K. & Hihara, T. Charge–discharge performances of Li–S battery using NaI–NaBH4–LiI solid electrolyte. J Solid State Electrochem 27, 1195–1201 (2023). https://doi.org/10.1007/s10008-023-05437-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05437-6

Keywords

Navigation