Skip to main content
Log in

Enhanced capacity of all-solid-state battery comprising LiNbO3-coated Li(Ni0.8Co0.1Mn0.1)O2 Cathode, Li5.4(PS4)(S0.4Cl1.0Br0.6) solid electrolyte and lithium metal anode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

All-solid-state lithium-ion batteries are a promising next-generation technology because they have higher energy densities than their liquid-electrolyte counterparts. Halogen-rich argyrodite, specifically Li5.4(PS4)(S0.4Cl1.0Br0.6), was recently shown to have higher ionic conductivities compared with those of other argyrodite-like sulfides. Although the Li5.4(PS4)(S0.4Cl1.0Br0.6) in Li | Li5.4(PS4)(S0.4Cl1.0Br0.6) | Li(Ni0.8Co0.1Mn0.1)O2–Li5.4(PS4)(S0.4Cl1.0Br0.6) batteries have shown good electrochemical stability, the low discharge capacity limits the application of the battery. In continuation, this study examined the potential of a carbon additive for altering the electronic conductivity of the cathode and enhancing the capacity of Li | Li5.4(PS4)(S0.4Cl1.0Br0.6) | Li(Ni0.8Co0.1Mn0.1)O2–Li5.4(PS4)(S0.4Cl1.0Br0.6) batteries. After a 50-cycle charge/discharge, the carbon additive (0.1 C) enhanced the discharge capacity from 3.1 to 167 mAh/g, resulted in a capacity retention rate and coulombic efficiency of 95.4% and 99.9% when using 0.1 C and 0.5 C, respectively, and increased the resistance of the battery from 53 to 56 Ω. Therefore, the all-solid-state battery employing high-ion-conductive Li5.4(PS4)(S0.4Cl1.0Br0.6) and a carbon-modified cathode showed improved capacity. This study provides a proven framework for developing all-solid-state batteries employing halogen-rich argyrodite (Li7-α(PS4)(S2-αXα); α > 1) with enhanced ionic conductivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jacobson MZ (2009) Review of solutions to global warming, air pollution, and energy security. Energy Environ Sci 2:148–173. https://doi.org/10.1039/B809990C

    Article  CAS  Google Scholar 

  2. Hannan MA, Lipu MSH, Hussain A, Mohamed A (2017) A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: challenges and recommendations. Renew Sustain Energy Rev 78:834–854. https://doi.org/10.1016/j.rser.2017.05.001

    Article  Google Scholar 

  3. Janek J, Zeier WG (2016) A solid future for battery development. Nat Energy 1:16141. https://doi.org/10.1038/nenergy.2016.141

    Article  Google Scholar 

  4. Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1:16030. https://doi.org/10.1038/nenergy.2016.30

    Article  CAS  Google Scholar 

  5. Boulineau S, Tarascon JM, Leriche JB, Viallet V (2013) Electrochemical properties of all-solid-state lithium secondary batteries using Li-argyrodite Li6PS5Cl as solid electrolyte. Solid State Ionics 242:45–48. https://doi.org/10.1016/j.ssi.2013.04.012

    Article  CAS  Google Scholar 

  6. Wang P, Liu H, Patel S, Feng X, Chien P-H, Wang Y, Hu YY (2020) Fast ion conduction and its origin in Li6−xPS5−xBr1+x. Chem Mater 32:3833–3840. https://doi.org/10.1021/acs.chemmater.9b05331

    Article  CAS  Google Scholar 

  7. Feng X, Chien P-H, Wang Y, Patel S, Wang P, Liu H, Immediato-Scuotto M, Hu YY (2020) Enhanced ion conduction by enforcing structural disorder in Li-deficient argyrodites Li6−xPS5−xCl1+x. Energy Stor Mater 30:67–73. https://doi.org/10.1016/j.ensm.2020.04.042

    Article  Google Scholar 

  8. Adeli P, Bazak JD, Park KH, Kochetkov I, Huq A, Goward GR, Nazar LF (2019) Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew Chem Int Ed Engl 58:8681–8686. https://doi.org/10.1002/anie.201814222

    Article  CAS  PubMed  Google Scholar 

  9. Adeli P, Bazak JD, Huq A, Goward GR, Nazar LF (2021) Influence of aliovalent cation substitution and mechanical compression on Li-ion conductivity and diffusivity in argyrodite solid electrolytes. Chem Mater 33:146–157. https://doi.org/10.1021/acs.chemmater.0c03090

    Article  CAS  Google Scholar 

  10. Suyama M, Kato A, Sakuda A, Hayashi A, Tatsumisago M (2018) Lithium dissolution/deposition behavior with Li3PS4-LiI electrolyte for all-solid-state batteries operating at high temperatures. Electrochim Acta 286:158–162. https://doi.org/10.1016/j.electacta.2018.07.227

    Article  CAS  Google Scholar 

  11. Epp V, Gün Ö, Deiseroth HJ, Wilkening M (2013) Highly mobile ions: low-temperature NMR directly probes extremely fast Li+ hopping in argyrodite-type Li6PS5Br. J Phys Chem Lett 4:2118–2123. https://doi.org/10.1021/jz401003a

    Article  CAS  Google Scholar 

  12. Gautam A, Sadowski M, Ghidiu M, Minafra N, Senyshyn A, Albe K, Zeier WG (2021) Engineering the site-disorder and lithium distribution in the lithium superionic argyrodite Li6PS5Br. Adv Energy Mater 11:2003369. https://doi.org/10.1002/aenm.202003369

    Article  CAS  Google Scholar 

  13. Patel SV, Banerjee S, Liu H, Wang P, Chien PH, Feng X, Liu J, Ong SP, Hu YY (2021) Tunable lithium-ion transport in mixed-halide argyrodites Li6−xPS5−xClBrx: an unusual compositional space. Chem Mater 33:1435–1443. https://doi.org/10.1021/acs.chemmater.0c04650

    Article  CAS  Google Scholar 

  14. De Klerk NJJ, Rosłoń I, Wagemaker M (2016) Diffusion mechanism of Li argyrodite solid electrolytes for Li-ion batteries and prediction of optimized halogen doping: the effect of Li vacancies, halogens, and halogen disorder. Chem Mater 28:7955–7963. https://doi.org/10.1021/acs.chemmater.6b03630

    Article  CAS  Google Scholar 

  15. Kraft MA, Culver SP, Calderon M, Böcher F, Krauskopf T, Senyshyn A, Dietrich C, Zevalkink A, Janek J, Zeier WG (2017) Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5 X (X = Cl, Br, I). J Am Chem Soc 139:10909–10918. https://doi.org/10.1021/jacs.7b06327

    Article  CAS  PubMed  Google Scholar 

  16. Yu C, Li Y, Li W, Adair KR, Zhao F, Willans M, Liang J, Zhao Y, Wang C, Deng S, Li R, Huang H, Lu S, Sham TK, Huang Y, Sun X (2020) Enabling ultrafast ionic conductivity in Br-based lithium argyrodite electrolytes for solid-state batteries with different anodes. Energy Stor Mater 30:238–249. https://doi.org/10.1016/j.ensm.2020.04.014

    Article  Google Scholar 

  17. Subramanian Y, Rajagopal R, Ryu KS (2022) Synthesis, air stability and electrochemical investigation of lithium superionic bromine substituted argyrodite (Li6−xPS5−xCl1.0Brx) for all-solid-state lithium batteries. J Power Sources 520:230849. https://doi.org/10.1016/j.jpowsour.2021.230849

    Article  CAS  Google Scholar 

  18. Masuda N, Kobayashi K, Utsuno F, Uchikoshi T, Kuwata N (2022) Effects of halogen and sulfur mixing on lithium-ion conductivity in Li7−xy(PS4)(S2–xyClxBry) argyrodite and mechanism for enhanced lithium conduction. J Phys Chem C 126:14067–14074. https://doi.org/10.1021/acs.jpcc.2c03780

    Article  CAS  Google Scholar 

  19. Masuda N, Kobayashi K, Utsuno F, Uchikoshi T, Kuwata N (2023) Electrochemical stability of Li5.4(PS4)(S0.4Cl1.0Br0.6) in an all-solid-state battery comprising LiNbO3-coated Li(Ni0.8Co0.1Mn0.1)O2 cathode and lithium metal anode. J Electrochem Soc 170:090529. https://doi.org/10.1149/1945-7111/acf880

    Article  Google Scholar 

  20. Yubuchi S, Uematsu M, Hotehama C, Sakuda A, Hayashi A, Tatsumisago M (2019) An argyrodite sulfide-based superionic conductor synthesized by a liquid-phase technique with tetrahydrofuran and ethanol. J Mater Chem A 7:558–566. https://doi.org/10.1039/C8TA09477B

    Article  CAS  Google Scholar 

  21. Park SW, Oh G, Park JW, Ha YC, Lee SM, Toon SY, Kim BG (2019) Graphitic hollow nanocarbon as a promising conducting agent for solid-state lithium batteries. Small 15:1900235. https://doi.org/10.1039/C8TA09477B

    Article  Google Scholar 

  22. Wang CW, Ren FC, Zhou Y, Yan PF, Zhou XD, Zhang SJ, Liu W, Zhang WD, Zou MH, Zeng LY, Yao XY, Huang L, Li JT, Sun SG (2021) Engineering the interface between LiCoO2 and Li10GeP2S12 solid electrolytes with an ultrathin Li2CoTi3O8 interlayer to boost the performance of all-solid-state batteries. Energy Environ Sci 14:437–450. https://doi.org/10.1039/D0EE03212C

    Article  CAS  Google Scholar 

  23. Walther F, Randau S, Schneider Y, Sann J, Rohnke M, Richter FH, Zeier WG, Janek J (2020) Influence of carbon additives on the decomposition pathways in cathodes of lithium thiophosphate-based all-solid-state batteries. Chem Mater 32:6123–6136. https://doi.org/10.1021/acs.chemmater.0c01825

    Article  CAS  Google Scholar 

  24. Randau S, Walther F, Neumann A, Schneider Y, Negi RS, Mogwitz B, Sann J, Becker-Steinberger K, Danner T, Hein S, Latz A, Richter FH, Janek J (2021) On the additive microstructure in composite cathodes and alumina-coated carbon microwires for improved all-solid-state batteries. Chem Mater 33:1380–1393. https://doi.org/10.1021/acs.chemmater.0c04454

    Article  CAS  Google Scholar 

  25. Walther F, Strauss F, Wu X, Mogwitz B, Hertle J, Sann J, Rohnke M, Brezesinski T, Janek J (2021) The working principle of a Li2CO3/LiNbO3 coating on NCM for thiophosphate-based all-solid-state batteries. Chem Mater 33:2110–2125. https://doi.org/10.1021/acs.chemmater.0c04660

    Article  CAS  Google Scholar 

  26. Kitsche D, Tang Y, Ma Y, Goonetilleke D, Sann J, Walther F, Bianchini M, Janek J, Brezesinski T (2021) High performance all-solid-state batteries with a Ni-Rich NCM cathode coated by atomic layer deposition and lithium thiophosphate solid electrolyte. ACS Appl Energy Mater 4:7338–7345. https://doi.org/10.1021/acsaem.1c01487

    Article  CAS  Google Scholar 

  27. Choi JH, Choi S, Embleton TJ, Ko K, Saqib KS, Ali J, Jo M, Hwang J, Park S, Kim M, Hwang M, Lim H, Oh P (2023) The effect of conductive additive morphology and crystallinity on the electrochemical performance of Ni-Rich cathodes for sulfide all-solid-state lithium-ion batteries. Nanomaterials (Basel) 13:3065. https://doi.org/10.3390/nano13233065

    Article  CAS  PubMed  Google Scholar 

  28. Lee KJ, Byeon YW, Lee HJ, Lee Y, Park S, Kim HR, Kim HK, Oh SJ, Ahn JP (2023) Revealing crack-healing mechanism of NCM composite cathode for sustainable cyclability of sulfide-based solid-state batteries. Energy Storage Mater 57:326–333. https://doi.org/10.1016/j.ensm.2023.01.012

    Article  Google Scholar 

  29. Cangaz S, Hippauf F, Reuter FS, Doerfler S, Abendroth T, Althues H, Kaskel S (2020) Enabling high-energy solid-state batteries with stable anode interphase by the use of columnar silicon anodes. Adv Energy Mater 10:2001320. https://doi.org/10.1002/aenm.202001320

    Article  CAS  Google Scholar 

  30. Li Y, Wu Y, Ma T, Wang Z, Gao Q, Xu J, Chen L, Li H, Wu F (2022) Long-life sulfide all-solid-state battery enabled by substrate-modulated dry-process binder. Adv Energy Mater 12:2001732. https://doi.org/10.1002/aenm.202201732

    Article  CAS  Google Scholar 

  31. Minnmann P, Quillman L, Burkhardt S, Richter FH, Janek J (2021) Editors’ Choice—Quantifying the impact of charge transport bottlenecks in composite cathodes of all-solid-state batteries. J Electrochem Soc 168:040537. https://doi.org/10.1149/1945-7111/abf8d7

    Article  CAS  Google Scholar 

  32. Ann J, Choi S, Do J, Lim S, Shin D (2018) Effects of binary conductive additives on electrochemical performance of a sheet-type composite cathode with different weight ratios of LiNi0.6Co0.2Mn0.2O2 in all-solid-state lithium batteries. J Ceram Process Res 19:413

    Google Scholar 

  33. Poetke S, Hippauf F, Baasner A, Dörfler S, Althues H, Kaskel S (2021) Nanostructured Si−C composites as high-capacity anode material for all-solid-state lithium-ion batteries. Batteries Supercaps 4:1323–1334. https://doi.org/10.1002/batt.202100055

    Article  CAS  Google Scholar 

  34. Jun S, Nam YJ, Kwak H, Kim KT, Oh DY, Jung YS (2020) Operando differential electrochemical pressiometry for probing electrochemo-mechanics in all-solid-state batteries. Adv Funct Mater 30:2002535. https://doi.org/10.1002/adfm.202002535

    Article  CAS  Google Scholar 

  35. Fang R, Liu Y, Li Y, Manthiram A, Goodenough JB (2023) Achieving stable all-solid-state lithium-metal batteries by tuning the cathode-electrolyte interface and ionic/electronic transport within the cathode. Mater Today 64:52–60. https://doi.org/10.1016/j.mattod.2023.03.001

    Article  CAS  Google Scholar 

  36. Kim KT, Woo J, Kim YS, Sung S, Park C, Lee C, Park YJ, Lee HW, Park K, Jung YS (2023) Ultrathin superhydrophobic coatings for air-stable inorganic solid electrolytes: toward dry room application for all-solid-state batteries. Adv Energy Mater 13:2301600. https://doi.org/10.1002/aenm.202301600

    Article  CAS  Google Scholar 

  37. Tan DHS, Wu EA, Nguyen H, Chen Z, Marple MAT, Doux JM, Wang X, Yang H, Banerjee A, Meng YS (2019) The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Energy Lett 4:2418–2427. https://doi.org/10.1021/acsenergylett.9b01693

    Article  CAS  Google Scholar 

  38. Zhang W, Leichtweiß T, Culver SP, Koerver R, Das D, Weber DA, Zeier WG, Janek J (2017) The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Appl Mater Interfaces 9:35888–35896. https://doi.org/10.1021/acsami.7b11530

    Article  CAS  PubMed  Google Scholar 

  39. Teo JH, Strauss F, Tripkovi Ð, Schweidler S, Ma Y, Bianchini M, Janek J, Brezesinski T (2021) Design-of-experiments-guided optimization of slurry-cast cathodes for solid-state batteries. Cell Rep Physiol Sci 2:100465. https://doi.org/10.1016/j.xcrp.2021.100465

    Article  CAS  Google Scholar 

  40. Yamamoto M, Terauchi Y, Sakuda A, Takahashi M (2018) Slurry mixing for fabricating silicon-composite electrodes in all-solid-state batteries with high areal capacity and cycling stability. J Power Sources 402:506–512. https://doi.org/10.1016/j.jpowsour.2018.09.070

    Article  CAS  Google Scholar 

  41. Kim AY, Strauss F, Bartsch T, Teo JH, Janek J, Brezesinski T (2021) Effect of surface carbonates on the cyclability of LiNbO3-coated NCM622 in all-solid-state batteries with lithium thiophosphate electrolytes. Sci Rep 11:5367. https://doi.org/10.1038/s41598-021-84799-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Embleton TJ, Yun J, Choi JH, Kim J, Ko K, Kim J, Son Y, Oh P (2023) Lithium-enhanced functionalized carbon nanofibers as a mixed electronic/ionic conductor for sulfide all solid-state batteries. Appl Surf Sci 610:155490. https://doi.org/10.1016/j.apsusc.2022.155490

    Article  CAS  Google Scholar 

  43. Swamy T, Chen X, Chiang YM (2019) Electrochemical redox behavior of Li ion conducting sulfide solid electrolytes. Chem Mater 31:707–713. https://doi.org/10.1021/acs.chemmater.8b03420

    Article  CAS  Google Scholar 

  44. Hakari T, Deguchi M, Mitsuhara K, Ohta T, Saito K, Orikasa Y, Uchimoto Y, Kowada Y, Hayashi A, Tatsumisago M (2017) Structural and electronic-state changes of a sulfide solid electrolyte during the Li deinsertion–insertion processes. Chem Mater 29:4768–4774. https://doi.org/10.1021/acs.chemmater.7b00551

    Article  CAS  Google Scholar 

  45. Rossman RP, Smith WR (1943) Density of carbon black by helium displacement. Ind Eng Chem 35:972–976. https://doi.org/10.1021/ie50405a008

    Article  CAS  Google Scholar 

  46. Bielefeld A, Weber DA, Janek J (2019) Microstructural modeling of composite cathodes for all-solid-state batteries. J Phys Chem C 123:1626–1634. https://doi.org/10.1021/acs.jpcc.8b11043

    Article  CAS  Google Scholar 

  47. Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M, Sasaki T (2007) LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem Commun 9:1486–1490. https://doi.org/10.1016/j.elecom.2007.02.008

    Article  CAS  Google Scholar 

  48. Gao X, Liu B, Hu B, Ning Z, Jolly DS, Zhang S, Perera J, Bu J, Liu J, Doerrer C, Darnbrough E, Armstrong D, Grant PS, Bruce PG (2022) Solid-state lithium battery cathodes operating at low pressures. Joule 6:636–646. https://doi.org/10.1016/j.joule.2022.02.008

    Article  CAS  Google Scholar 

  49. Walther F, Koerver R, Fuchs T, Ohno S, Sann J, Rohnke M, Zeier WG, Janek J (2019) Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries using time-of-flight secondary-ion mass spectrometry. Chem Mater 31:3745–3755. https://doi.org/10.1021/acs.chemmater.9b00770

    Article  CAS  Google Scholar 

  50. Kobayashi K, Sakka Y, Suzuki TS (2016) Development of an electrochemical impedance analysis program based on the expanded measurement model. J Ceram Soc Jpn 124:943–949. https://doi.org/10.2109/jcersj2.16120

    Article  CAS  Google Scholar 

  51. Koerver R, Aygün I, Leichtweiß T, Dietrich C, Zhang W, Binder JO, Hartmann P, Zeier WG, Janek J (2017) Capacity fade in solid-state batteries: Interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem Mater 29:5574–5582. https://doi.org/10.1021/acs.chemmater.7b00931

    Article  CAS  Google Scholar 

  52. Tachez M, Malugani JP, Mercier R, Robert G (1984) Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4. Solid State Ion 14:181–185. https://doi.org/10.1016/0167-2738(84)90097-3

    Article  CAS  Google Scholar 

  53. Liu Z, Fu W, Payzant EA, Yu X, Wu Z, Dudney NJ, Kiggans J, Hong K, Rondinone AJ, Liang C (2013) Anomalous high ionic conductivity of nanoporous β-Li3PS4. J Am Chem Soc 135:975–978. https://doi.org/10.1021/ja3110895

    Article  CAS  PubMed  Google Scholar 

  54. Marchini F, Porcheron B, Rousse G, Albero Blanquer LA, Droguet L, Foix D, Koç T, Deschamps M, Tarascon JM (2021) The hidden side of nanoporous β-Li3PS4 solid electrolyte. Adv Energy Mater 11:2101111. https://doi.org/10.1002/aenm.202101111

    Article  CAS  Google Scholar 

  55. Hayakawa E, Nakamura H, Ohsaki S, Watano S (2022) Characterization of solid-electrolyte/active-material composite particles with different surface morphologies for all-solid-state batteries. Adv Powder Technol 33:103470. https://doi.org/10.1016/j.apt.2022.103470

    Article  CAS  Google Scholar 

  56. Hayakawa E, Nakamura H, Ohsaki S, Watano S (2022) Dry mixing of cathode composite powder for all-solid-state batteries using a high-shear mixer. Adv Powder Technol 33:103705. https://doi.org/10.1016/j.apt.2022.103705

    Article  Google Scholar 

  57. Lu X, Tsai CL, Yu S, He H, Camara O, Tempel H, Liu Z, Windmüller A, Alekseev EV, Basak S, Lu L, Eichel RA, Kungl H (2022) Lithium phosphosulfide electrolytes for solid-state batteries: Part I. Funct Mater Lett 15:2240001. https://doi.org/10.1142/S179360472240001X

    Article  CAS  Google Scholar 

  58. Kobayashi K, Terabe K, Sukigara T, Sakka Y (2013) Theoretical modeling of electrode impedance for an oxygen ion conductor and metallic electrode system based on the interfacial conductivity theory. Part II: Case of the limiting process by non steady-state surface diffusion. Solid State Ion 249–250:78–85. https://doi.org/10.1016/j.ssi.2013.07.022

    Article  CAS  Google Scholar 

  59. Min YJ, Lee GE, Seong JY, Shin HC (2023) Advanced electrochemical analysis of all-solid-state battery electrodes using novel potential-controllable symmetric cell. Electrochim Acta 468:143154. https://doi.org/10.1016/j.electacta.2023.143154

    Article  CAS  Google Scholar 

  60. Zhang J, Zheng C, Li L, Xia Y, Huang H, Gan Y, Liang C, He X, Tao X, Zhang W (2020) Unraveling the intra and intercycle interfacial evolution of Li6PS5Cl-based all-solid-state lithium batteries. Adv Energy Mater 10:1903311. https://doi.org/10.1002/aenm.201903311

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Naoya Masuda performed all syntheses, electrochemical measurements, and analyses. The paper was written by Naoya Masuda and Kiyoshi Kobayashi with input from Futoshi Utsuno and Naoaki Kuwata.

Corresponding author

Correspondence to Naoya Masuda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 462 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masuda, N., Kobayashi, K., Utsuno, F. et al. Enhanced capacity of all-solid-state battery comprising LiNbO3-coated Li(Ni0.8Co0.1Mn0.1)O2 Cathode, Li5.4(PS4)(S0.4Cl1.0Br0.6) solid electrolyte and lithium metal anode. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05886-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05886-7

Keywords

Navigation