Skip to main content
Log in

The possibilities of voltammetry in the study reactivity of dissolved organic carbon (DOC) in natural waters

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This paper describes the application of a methodology, which primarily involves low-cost voltammetry, to rapidly track the reactivity (i.e. surfactant activity, SA) of dissolved organic carbon (DOC) in aquatic systems. The approach is based on the quantitative measurement of total surface activity (expressed as Triton-X-100 equivalent) of adsorbing organic compounds (AOCs) of amphiphilic and/or hydrophobic nature at the mercury electrode/electrolyte interface in natural water samples using phase-sensitive (out-of-phase) alternating current voltammetry (PSACV). The SA results were normalized to the DOC content. A graphical representation of DOC-normalized SA for different water systems allows a rough characterization and comparison of the DOC type at different scales (spatial, seasonal, temporal short- and long-term) and in extreme natural events such as different hydrological, meteorological, biological, and physical processes. The main idea is to demonstrate the capabilities of PSACV in the study of DOC in water systems. The presented methodology could be used in future research and monitoring studies, as PSACV is the only practical method available for the determination of surface active DOC in natural waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pavitt AS, Tratnyek PG (2019) Electrochemical characterization of natural organic matter by direct voltammetry in an aprotic solvent. Environ Sci Processes Impacts 21:1664–1683

  2. Scholz F (2015) Voltammetric techniques of analysis: the essentials. ChemTexts 1:17. https://doi.org/10.1007/s40828-015-0016-y

    Article  Google Scholar 

  3. Ćosović B, Vojvodić V (1998) Voltammetric analysis of surface active substances in natural seawater. Electroanalysis 10(6):429–434. https://doi.org/10.1002/(SICI)1521-4109(199805)10:6b429:AID-ELAN429N3.0.CO;2-7

    Article  Google Scholar 

  4. Orlović-Leko P, Vidović K, Ciglenečki I et al (2016) Voltammetry as a tool for rough and rapid characterization of dissolved organic matter in the drainage water of hydroameliorated agricultural areas in Croatia. J Solid State Electrochem 20:3097–3105

    Article  Google Scholar 

  5. Ciglenečki I, Vilibić I, Dautović et al (2020) Dissolved organic carbon and surface active substances in the northern Adriatic Sea: long-term trends, variability and drivers. Sci Total Environ 730:139104

    Article  PubMed  Google Scholar 

  6. Ciglenečki I, Paliaga P, Budiša A et al (2021) Dissolved organic carbon accumulation during a bloom of invasive gelatinous zooplankton Mnemiopsis leidyi in the northern Adriatic Sea; case of the anomalous summer in 2017. J Mar Syst 222:103599

    Article  Google Scholar 

  7. Ciglenečki I, Orlović-Leko P, Vidović K et al (2021) The possible role of the surface active substances (SAS) in the airborne transmission of SARS-CoV-2. Environ Res 198:111–215

    Article  Google Scholar 

  8. Ćosović B, Vojvodić V (1987) Direct determination of surface active substances in natural waters. Mar Chem 22:363–373

    Article  Google Scholar 

  9. Wurl O, Wurl E, Miller L et al (2011) Formation and global distribution of sea-surface microlayers. Biogeosciences 8(1):121–135. https://doi.org/10.5194/bg-8-121-2011

    Article  CAS  Google Scholar 

  10. Sabbaghzadeh B, Upstill-Goddard RC, Beale R et al (2017) (2017) The Atlantic Ocean surface microlayer from 50°N to 50°S is ubiquitously enriched in surfactants at wind speeds up to 13 m s−1. Geophys Res Lett 44(6):2852–2858. https://doi.org/10.1002/2017GL072988

    Article  Google Scholar 

  11. Žutić V, Legović T (1988) A film of organic matter at the freshwater/seawater interface of an estuary. Nature 328:612–614

    Article  Google Scholar 

  12. Ćosović B, Vojvodić V (1989) Adsorption behaviour of the hydrophobic fraction of organic matter in natural waters. Mar Chem 28:183–198

    Article  Google Scholar 

  13. Marguš M, Morales-Reyes I, Bura-Nakić E et al (2015) The anoxic stress conditions explored at the nanoscale by atomic force microscopy in highly eutrophic and sulfidic marine lake. Cont Shelf Res 109:24–34

    Article  Google Scholar 

  14. Ciglenečki I, Ljubešić Z, Janeković I, Batistić M (2017) Rogoznica Lake, a euxinic marine lake on the adriatic coast (Croatia) that fluctuates between anoxic holomictic and meromictic conditions. In Ecology of Meromictic Lakes (Eds.: R.D. Gulati, E.S. Zadereev, A.G. Degermendzhi). Springer p. 125–154

  15. Kozarac Z, Ćosović B, Moebius D et al (1997) Adsorption of pyrene at model hydrophobic interfaces. Croat Chem Acta 70:125–139

    CAS  Google Scholar 

  16. Stortini AM, Martellini T, Del Bubba M et al (2009) n-Alkanes, PAHs and surfactants in the sea surface microlayer and sea water samples of the Gerlache Inlet sea (Antarctica). Microchem J 92:37–43

    Article  CAS  Google Scholar 

  17. Katrijn MA, Holvoet A, Seuntjens P et al (2007) Review Monitoring and modeling pesticide fate in surface waters at the catchment scale. Ecol Modell 209:53–64

    Article  Google Scholar 

  18. Žutić V, Ćosović B, Marčenko E et al (1981) Surfactant production by marine phytoplankton. Mar Chem 10:505–520. https://doi.org/10.1016/0304-4203(81)90004-9

    Article  Google Scholar 

  19. Ćosović B, Ciglenečki I, Viličić D et al (2000) Distribution and seasonal variability of organic matter in a small eutrophicated salt lake. Estuar Coast Shelf Sci 51:705–715. https://doi.org/10.1006/ecss.2000.0721

  20. Ciglenečki I, Dautović J, Cvitešić A et al (2018) Production of surface active organicmaterial and reduced sulphur species during the growth of marine diatom Cylindrotheca closterium. Croat Chim Acta 91(4):1–7. https://doi.org/10.5562/cca3433

    Article  Google Scholar 

  21. Kurata N, Vella K, Hamilton B et al (2016) Surfactant-associated bacteria in the near-surface layer of the ocean. Sci Rep 6:19123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kujawinski EB, Farrington JW, Moffett JW (2002) Evidence for grazing-mediated production of dissolved surface-active material by marine protists. Mar Chem 77(2):133–142. https://doi.org/10.1016/S0304-4203(01)00082-2

    Article  CAS  Google Scholar 

  23. Croot PL, Passow U, Assmy P et al (2007) Surface active substances in the upper water column during a Southern Ocean Iron Fertilization Experiment (EIFEX). Geophys Res Lett 34:LO3612. https://doi.org/10.1029/2006GL028080

  24. Olkowska E, Ruman M, Polkowska G (2014) Occurrence of surface active agents in the environment. J J Anal Methods Chem. https://doi.org/10.1155/2014/769708

    Article  Google Scholar 

  25. Tilstone GH, Airs RL, Martinez-Vicente V et al (2010) High concentrations of mycosporine-505 like amino acids and colored dissolved organic matter in the sea surface microlayer off the Iberian Peninsula. Limnol Oceanogr 55(5):1835–1850

    Article  CAS  Google Scholar 

  26. Plavšić M, Vojvodić V, Ćosović B (1990) Characterization of surface-active substances during a semi-field experiment on a phytoplankton bloom. Anal Chim Acta 232:131–140

  27. Ciglenečki I, Ćosović B (1996) Electrochemical study of sulfur species in seawater and marine phytoplankton cultures. Mar Chem 52:87–97. https://doi.org/10.1016/0304-4203(95)00080-1.I

  28. Cvrković-Karloci Ž, Krznarić D, Šeruga M., Ćosović B (2011) Simple electrochemical determination of surface-active substances in natural waters. Int J Electrochem. https://doi.org/10.4061/2011/416834 (Article ID 416834)

  29. McDonald S, Bishop AG, Prenzler PD et al (2004) Analytical chemistry of freshwater humic substances. Anal Chim Acta 527(2):105–124

    Article  CAS  Google Scholar 

  30. Breyer B, Bauer HH (1963) Alternating current polarography and tensammetry. Interscience, New York

    Google Scholar 

  31. Ćosović B (1990) Adsorption kinetics of the complex mixture of organic solutes at model and natural phase boundaries. In Aquatic Chemical Kinetics (Eds.: W. Stumm) Wiley, New York p 291–310

  32. Ciglenečki I, Marguš M, Orlović-Leko P (2018) Mercury electrode as a tool/sensor for pollutants monitoring in natural waters; advantages and disadvantages regarding moving to “green” electrochemistry. Int J Biosen Bioelectron 4(3):94–96

    Google Scholar 

  33. Gajdar J, Horakova E, Barek J et al (2016) Recent applications of mercury electrodes for monitoring of pesticides: a critical review. Electroanalysis 28:1–14

    Article  Google Scholar 

  34. Ćosović B, Vojvodić V, Bošković N et al (2010) Characterization of natural and synthetic humic substances (melanoidins) by chemical composition and adsorption measurements. Organic Geochem 41(2):200–205

    Article  Google Scholar 

  35. King L, Roberts IJ, Tinel L et al (2019) The determination of surfactants at the sea surface. Ocean Sci Discuss [preprint]. https://doi.org/10.5194/os-2019-87

  36. Gašparović B, Ćosović B (2001) Distribution of surface-active substances in the northern Adriatic Sea. Mar Chem 75:301–313. https://doi.org/10.1016/S0304-4203(01)00044-5

    Article  Google Scholar 

  37. Orlović-Leko P, Vidović K, Ciglenečki, et al (2020) Physico-chemical characterization of an urban rainwater (Zagreb, Croatia). Atmosphere 11:144. https://doi.org/10.3390/atmos11020144

    Article  CAS  Google Scholar 

  38. Pereira R, Ashton I, Sabbaghzadeh B et al (2018) Reduced air-sea CO2 exchange in the Atlantic Ocean due to biological surfactants. Nat Geosci 11:492–496

    Article  CAS  Google Scholar 

  39. Ciglenečki I, Carić M, Kršinić F et al (2005) The extinction by sulphide-turnover and recovery of a naturally eutrophic, meromictic seawater lake. J Mar Syst 1–2:29–44

    Article  Google Scholar 

  40. Paliaga P, Budiša A, Dautović J et al (2021) Microbial response to the presence of invasive ctenophore Mnemiopsis leidyiin the coastal waters of the Northeastern Adriatic. Estuar Coast Shelf Sci 259:107459

    Article  CAS  Google Scholar 

  41. Ćosović B, Kozarac Z, Frka S, Vojvodić V (2010) Electrochemical adsorption study of natural organic matter in marine and freshwater systems. A plea for use of mercury for scientific purposes. Electroanalysis 22(17–18):1994–2000

  42. Plavšić M, Ćosović B, Rodić S (1996) Adsorption of polyacrylic acid on hydrophobic and hydrophilic surfaces. Colloid Poliymer Sci 274:548–554

    Article  Google Scholar 

  43. Plavšić M, Ćosović B (2000) Adsorption properties of different polysaccharides on mercury in sodium chloride solutions. Electroanalysis 12:895–900

    Article  Google Scholar 

  44. Orlović-Leko P, Kozarac Z, Ćosović B (2004) Surface active substances (SAS) and dissolved organic matter (DOC) in atmospheric precipitation of urban area of Croatia (Zagreb). Water Air Soil Pollut 158(1):295–310

    Article  Google Scholar 

  45. Ćosović B, Orlović-Leko P, Kozarac Z (2007) Rainwater dissolved organic carbon characterization of surface active substances by electrochemical method. Electroanalysis 19:2077–2084

    Article  Google Scholar 

  46. Orlović-Leko P, Plavšić M, Bura-Nakić E et al (2009) Organic matter in the bulk precipitations in Zagreb and Šibenik Croatia. Atmos Environ 43:805–811

    Article  Google Scholar 

  47. Strmečki S, Plavšić M, Steigenberger, et al (2010) Characterization of phytoplankton exudates and carbohydrates in relation to their complexation of copper, cadmium and iron. Mar Ecol Prog Ser 408:33–46

    Article  Google Scholar 

  48. Orlović-Leko P, Ciglenečki I, Šimunić I, Dautović J (2021) Dissolved organic carbon in different aquatic systems (rainwater, and waters in lonja field). Proceedings book of the 2nd International conference “The holistic approach to environment” / Štrkalj, Anita; Glavaš, Zoran (ed.), p 720

  49. Cvitešić Kušan A, Milosavljević F, Ciglenečki I (2019) Electrochemical evidence of non-volatile reduced sulfur species in water-soluble fraction of fine marine aerosols. Atmosphere 10:674

    Article  Google Scholar 

  50. Strmečki S, Ciglenečki I, Gligora Udovič M et al (2018) Voltammetric study of organic matter components in the upper reach of the Krka River, Croatia. Croat Chem Acta 91(4). https://doi.org/10.5562/cca3443

  51. Scholz F (2020) Editorial. J Solid State Electrochem 24:2019–2021

    Article  CAS  Google Scholar 

  52. Ochs M, Ćosović B, Stumm W (1994) Coordinative and hydrophobic interactions of humic substances with hydrophilic Al2O3 and hydrophobic mercury surfaces. Geochim Cosmochim Acta 58:639–650

  53. Klučáková M (2018) Size and charge evaluation of standard humic and fulvic acids as crucial factors to determine their environmental behavior and impact. Front Chem 6:235. https://doi.org/10.3389/fchem.2018.00235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ciglenečki I, Janeković I, Marguš M et al (2015) Impacts of extreme weather events on highly eutrophic marine ecosystem (Rogoznica Lake, Adriatic coast). Cont Shelf Res 108:144–155

    Article  Google Scholar 

  55. Dautović J, Vojvodić V, Tepić N et al (2017) Dissolved organic carbon as potential indicator od global change: a long-term investigation in the northern Adriatic. Sci Total Environ 587–588:185–195

    Article  PubMed  Google Scholar 

  56. Mifka B, Telišman Prtenjak M, Kuzmić J et al (2022) Climatology of dust deposition in the Adriatic Sea; a possible impact on marine production. J Geophys Res Atmos 127(7):e2021JD035783

  57. Ciglenečki I, Ćosović B, Vojvodić V et al (2000) The role of reduced sulfur species in the coalescence of polysaccharides in the Adriatic Sea. Mar Chem 71(3–4):233–249

    Article  Google Scholar 

  58. Najdek M, Blažina M, Djakovac T et al (2005) The role of the diatom Cylindrotheca closterium in a mucilage event in the northern Adriatic Sea: coupling with high salinity water intrusions. J Plankton Res 27:851

    Article  Google Scholar 

  59. Šimunić I, Tomić F, Ostojić Z (2002) Concentration and leaching of atrazine into drainage water in Gleyic Podzoluvisol. Rostlinná Výroba 48(4):167–174

    Google Scholar 

  60. Arias-Estévez M, López-Periago E, Martínez-Carballo E et al (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123:247–260

    Article  Google Scholar 

  61. Benoit P, Madrigal I, Preston CM et al (2008) Sorption and desorption of nonionic herbicides onto particulate organic matter from surface soils under different land uses. Eur J Soil Sci 59:178–189

    Article  CAS  Google Scholar 

  62. Tejada M, Del Toro M, Gómez I, Parrado J (2011) Application of diflufenican herbicide on soils amended with different organic wastes. In: Kortekamp A (ed) Hebicides and environment. https://doi.org/10.5772/13006

  63. Baćmaga M, Borowik A, Kucharski J et al (2015) Microbial and enzymatic activity of soil contaminated with a mixture of diflufenican + mesosulfuron-methyl + iodosulfuron-methyl-sodium. Environ Sci Pollut Res Int 22(1):643–656

    Article  PubMed  Google Scholar 

  64. Blanchette ML, Lund MA (2016) Pit lakes are a global legacy of mining: an integrated approach to achieving sustainable ecosystems and value for communities. Curr Opin Environ Sustain 23:28–34

    Article  Google Scholar 

  65. Gammons CH, Harris LN, Castro JM et al (2009) Creating lakes from open pit mines: processes and considerations - with emphasis on northern environments. Can Tech Rep Fish Aquat Sci 2826:ix+106

  66. Iavorska L, Boyer EW, Grimm JW (2017) Wet atmospheric deposition of organic carbon: an underreported source of carbon to watersheds in the northeastern United States. J Geophys Res Atmospheres 122:3104–3115. https://doi.org/10.1002/2016jd026027

    Article  Google Scholar 

  67. Lei YD, Wania F (2004) Is rain or snow a more efficient scavenger of organic chemicals? Atmo Environ 38:3557–3571

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Z. Zovko for DOC measurements and to all other colleagues and students who helped in SAS measurements and sample collection. I.C. acknowledges V. Vojvodić and B. Ćosović for sharing their data and knowledge about measuring the surfactant activity. The comments raised by two anonymous reviewers are greatly appreciated.

Funding

This study was supported by the Croatian Science Foundation through the project IP-2018-01-1717, MARRES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Ciglenečki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 994 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciglenečki, I., Orlović-Leko, P., Vidović, K. et al. The possibilities of voltammetry in the study reactivity of dissolved organic carbon (DOC) in natural waters. J Solid State Electrochem 27, 1781–1793 (2023). https://doi.org/10.1007/s10008-023-05423-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05423-y

Keywords

Navigation