Skip to main content

Advertisement

Log in

Ball mill–assisted synthesis of carbon-free SnSe nanoparticles for sodium-ion battery anodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Tin selenide (SnSe) is a potential candidate for sodium-ion battery anodes owing to its high theoretical capacity, environmental benignity, and abundant resources. Herein, the resulting SnSe anodes are synthesized by mechanochemical route employing a high-energy ball mill without addition of carbon during the synthesis. This green synthesis route can be simply applied to both laboratory and industry scales since it does not require the use of any organic solvents. Exact stoichiometric ratio of Sn and Se powder is milled at 25 Hz with varying synthesis periods (2 h, 4 h, and 8 h). Among the samples, 2-h-milled sample is the choice of the anode materials in which no impurities or secondary phase formation characterized by both structural and morphological analyses as well as further electrochemical tests. The impact of binder is also investigated in which poly (acrylic acid) (PAA) performed the best, resulting a capacity retention of 350 mAh/g during 100 cycle at 27.5 mA/g current density and ~ 250 mAh/g specific capacity at 275 mA/g current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang C, Xin S, Mai L et al (2021) Materials design for high-safety sodium-ion battery. Adv Energ Mater 11:2000974

    Article  CAS  Google Scholar 

  2. Slater MD, Kim D, Lee E et al (2013) Sodium-ion batteries. Adv Func Mater 23:947–958

    Article  CAS  Google Scholar 

  3. Liang Y, Lai WH, Miao Z et al (2018) Nanocomposite materials for the sodium–ion battery: a review. Small 14:1702514

    Article  Google Scholar 

  4. Wang J, Wang Z, Ni J et al (2022) Electrospun materials for batteries moving beyond lithium-ion technologies. J Electrochem Energ Rev 5:211–241

    Article  CAS  Google Scholar 

  5. Wang T, Su D, Shanmukaraj D et al (2018) Electrode materials for sodium-ion batteries: considerations on crystal structures and sodium storage mechanisms. Electrochem Energ Rev 1:200–237

    Article  CAS  Google Scholar 

  6. Ge P, Fouletier M (1988) Electrochemical intercalation of sodium in graphite. Solid State Ionics 28:1172–1175

    Article  Google Scholar 

  7. Jache B, Adelhelm P (2014) Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. J Angewandte Chemie 126:10333–10337

    Article  Google Scholar 

  8. Li Y, Lu Y, Adelhelm P et al (2019) Intercalation chemistry of graphite: alkali metal ions and beyond. Chem Soc Rev 48:4655–4687

    Article  CAS  PubMed  Google Scholar 

  9. Zhang SW, Lv W, Luo C et al (2016) Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries. Energ Storage Mater 3:18–23

    Article  Google Scholar 

  10. Aydin M, Demir E, Unal B et al (2019) Chitosan derived N-doped carbon coated SnO2 nanocomposite anodes for Na-ion batteries. Solid State Ionics 341:115035

    Article  CAS  Google Scholar 

  11. Canbaz E, Aydin M, Demir-Cakan R (2022) Investigation of hazelnut shells driven hard carbons as anode for sodium-ion batteries produced by hydrothermal carbonization method. Turk J Chem

  12. Demir E, Aydin M, Arie AA et al (2019) Apricot shell derived hard carbons and their tin oxide composites as anode materials for sodium-ion batteries. J Alloy Compd 788:1093–1102

    Article  CAS  Google Scholar 

  13. Wan F, Lue H-Y, Zhang X-H et al (2016) The in-situ-prepared micro/nanocomposite composed of Sb and reduced graphene oxide as superior anode for sodium-ion batteries. J Alloy Compd 672:72–78

    Article  CAS  Google Scholar 

  14. Xu Y, Zhu Y, Liu Y et al (2013) Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv Energ Mater 3:128–133

    Article  CAS  Google Scholar 

  15. Dursun B, Topac E, Alibeyli R et al (2017) Fast microwave synthesis of SnO2@ graphene/N-doped carbons as anode materials in sodium ion batteries. J Alloy Compd 728:1305–1314

    Article  CAS  Google Scholar 

  16. Dogrusoz M, Demir-Cakan R (2020) Mechanochemical synthesis of SnS anodes for sodium ion batteries. Int J Energ 44:10809–10820

    CAS  Google Scholar 

  17. Shaji N, Santhoshkumar P, Kang HS et al (2020) Tin selenide/N-doped carbon composite as a conversion and alloying type anode for sodium-ion batteries. J Alloy Compd 834:154304

    Article  CAS  Google Scholar 

  18. Hu Z, Liu Q, Chou SL et al (2017) Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv Mater 29:1700606

    Article  Google Scholar 

  19. Liang J-M, Zhang L-J, XiLi D-G et al (2020) Research progress on tin-based anode materials for sodium ion batteries. J Rare Metals 39:1005–1018

    Article  CAS  Google Scholar 

  20. Ni J, Zhu X, Yuan Y et al (2020) Rooting binder-free tin nanoarrays into copper substrate via tin-copper alloying for robust energy storage. J Nat Commun 11:1–8

    Google Scholar 

  21. Li R, Zhang G, Wang Y et al (2021) Fast ion diffusion kinetics based on ferroelectric and piezoelectric effect of SnO2/BaTiO3 heterostructures for high-rate sodium storage. J Nano Energ 90:106591

    Article  CAS  Google Scholar 

  22. Li R, Zhang G, Zhang P et al (2022) Accelerating ion transport via in-situ formation of built-in electric field for fast charging sodium-ion batteries. J Chem Eng J 450:138019

    Article  CAS  Google Scholar 

  23. Liu S, Li X-Z, Huang B et al (2021) Controllable construction of yolk–shell Sn–Co@ void@ C and its advantages in Na-ion storage. J Rare Metals 40:2392–2401

    Article  CAS  Google Scholar 

  24. Dai S, Wang L, Cao M et al (2019) Design strategies in metal chalcogenides anode materials for high-performance sodium-ion battery. Mater Today Energ 12:114–128

    Article  Google Scholar 

  25. Zhu X, Liu D, Zheng D et al (2018) Dual carbon-protected metal sulfides and their application to sodium-ion battery anodes. J Mater Chem A 6:13294–13301

    Article  CAS  Google Scholar 

  26. Lu T, Dong S, Zhang C et al (2017) Fabrication of transition metal selenides and their applications in energy storage. Coord Chem Rev 332:75–99

    Article  CAS  Google Scholar 

  27. Zhang J, Wang Y, Yu M et al (2022) Understanding the role of topotactic anion exchange in the robust Cu ion storage of CuS1–x Sex. J ACS Energ Lett 7:1835–1841

    Article  CAS  Google Scholar 

  28. Zhao X, Wang W, Hou Z et al (2019) Yolk–shell structured SnSe as a high-performance anode for Na-ion batteries. Inorg Chem Front 6:562–565

    Article  CAS  Google Scholar 

  29. Ge ZH, Wei K, Lewis H et al (2015) Bottom-up processing and low temperature transport properties of polycrystalline SnSe. J Solid State Chem 225:354–358

    Article  CAS  Google Scholar 

  30. Zhang Z, Zhao X, Li J (2016) SnSex flowerlike composites as anode materials for sodium ion batteries. Mater Lett 162:169–172

    Article  CAS  Google Scholar 

  31. Qu G, Zhang X, Xiang G et al (2020) ZIF-67 derived hollow Ni-Co-Se nano-polyhedrons for flexible hybrid supercapacitors with remarkable electrochemical performances. Chin Chem Lett 31:2007–2012

    Article  CAS  Google Scholar 

  32. Xia J, Yuan Y, Yan H et al (2020) Electrospun SnSe/C nanofibers as binder-free anode for lithium–ion and sodium-ion batteries. J Power Sources 449:227559

    Article  CAS  Google Scholar 

  33. Zhang Z, Zhao X, Li J (2015) SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries. Electrochim Acta 176:1296–1301

    Article  CAS  Google Scholar 

  34. Leonardi M, Villacampa M, Menéndez JC (2018) Multicomponent mechanochemical synthesis. Chem Sci 9:2042–2064

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Achimovičová M, Rečnik A, Fabián M et al (2011) Characterization of tin selenides synthesized by high-energy milling. Acta Montanistica Slovaca 16:123

    Google Scholar 

  36. Kim Y, Kim Y, Park Y et al (2015) SnSe alloy as a promising anode material for Na-ion batteries. Chem Commun 51:50–53

    Article  CAS  Google Scholar 

  37. Yang X, Zhang R, Chen N et al (2016) Assembly of SnSe nanoparticles confined in graphene for enhanced sodium-ion storage performance. Chem-A Eur J 22:1445–1451

    Article  CAS  PubMed  Google Scholar 

  38. James SL, Adams CJ, Bolm C et al (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41:413–447

    Article  CAS  PubMed  Google Scholar 

  39. Komaba S, Shimomura K, Yabuuchi N et al (2011) Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries. J Phys Chem 115:13487–13495

    CAS  Google Scholar 

  40. Butt FK, Cao C, Khan WS et al (2012) Synthesis of highly pure single crystalline SnSe nanostructures by thermal evaporation and condensation route. Mater Chem Phys 137:565–570

    Article  CAS  Google Scholar 

  41. Mathews N (2012) Electrodeposited tin selenide thin films for photovoltaic applications. Sol Energy 86:1010–1016

    Article  CAS  Google Scholar 

  42. Fan S, Zhang Y, Li S-H et al (2017) Hollow selenium encapsulated into 3D graphene hydrogels for lithium–selenium batteries with high rate performance and cycling stability. RSC Adv 7:21281–21286

    Article  CAS  Google Scholar 

  43. Agarwal A, Chaki SH, Lakshminarayana D (2007) Growth and thermal studies of SnSe single crystals. Mater Lett 61:5188–5190

    Article  CAS  Google Scholar 

  44. Chen ZG, Shi X, Zhao L-D et al (2018) High-performance SnSe thermoelectric materials: progress and future challenge. Prog Mater Sci 97:283–346

    Article  CAS  Google Scholar 

  45. Javed A, Khan N, Bashir S et al (2020) Thickness dependent structural, electrical and optical properties of cubic SnS thin films. Mater Chem Phys 246:122831

    Article  CAS  Google Scholar 

  46. Akram M, Saleh AT, Ibrahim WAW et al (2016) Continuous microwave flow synthesis (CMFS) of nano-sized tin oxide: effect of precursor concentration. J Ceram Int 42:8613–8619

    Article  CAS  Google Scholar 

  47. Farrukh MA, Teck HB, Adnan R (2010) Surfactant-controlled aqueous synthesis of SnO_2 nanoparticles via the hydrothermal and conventional heating methods. Turk J Chem 34:537–550

    CAS  Google Scholar 

  48. Fatima S, Alfrayh R, Alrashed M et al (2021) Selenium nanoparticles by moderating oxidative stress promote differentiation of mesenchymal stem cells to osteoblasts. Int J Comput Vis Biomech 16:331

    Google Scholar 

  49. He C, Wang C, Li F et al (2019) Confining SnSe nanobelts in 3D rGO aerogel for achieving stable and fast lithium storage. J Mater Res Bull 115:80–87

    Article  Google Scholar 

  50. Yuan S, Zhu YH, Li W et al (2017) Surfactant-free aqueous synthesis of pure single-crystalline SnSe nanosheet clusters as anode for high energy- and power-density sodium-ion batteries. Adv Mater 29:1602469

    Article  Google Scholar 

  51. Verma R, Didwal PN, Nguyen A-G et al (2021) SnSe nanocomposite chemically-bonded with carbon-coating as an anode material for K-ion batteries with outstanding capacity and cyclability. J Chem Eng J 421:129988

    Article  CAS  Google Scholar 

  52. Park GD, Lee JH, Kang YC (2016) Superior Na-ion storage properties of high aspect ratio SnSe nanoplates prepared by a spray pyrolysis process. Nanoscale 8:11889–11896

    Article  CAS  PubMed  Google Scholar 

  53. Salavati-Niasari M, Davar F (2010) Shape selective hydrothermal synthesis of tin sulfide nanoflowers based on nanosheets in the presence of thioglycolic acid. J Alloys Comp 492:570–575

    Article  CAS  Google Scholar 

  54. Ivanauskas R, Kunciute A, Ancutiene I et al (2022) Impact of surface morphology and thickness of tin selenide thin films on their optical properties. Surf Interfaces 28:101675

    Article  CAS  Google Scholar 

  55. Lu C, Li Z, Xia Z et al (2019) Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage. Nano Res 12:3051–3058

    Article  CAS  Google Scholar 

  56. Wang W, Li P, Zheng H et al (2017) Ultrathin layered SnSe nanoplates for low voltage, high-rate, and long-life alkali–ion batteries. Small 13:1702228

    Article  Google Scholar 

  57. Wang M, Peng A, Xu H et al (2020) Amorphous SnSe quantum dots anchoring on graphene as high performance anodes for battery/capacitor sodium ion storage. J Power Sources 469:228414

    Article  CAS  Google Scholar 

  58. Li R, Yang Z, He X et al (2021) Binders for sodium-ion batteries: progress, challenges and strategies. J Chem Commun 57:12406–12416

    Article  CAS  Google Scholar 

  59. Yang Q, Zhang Z, Sun X-G et al (2018) Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev 47:2020–2064

    Article  CAS  PubMed  Google Scholar 

  60. Zhang W, Dahbi M, Komaba S (2016) Polymer binder: a key component in negative electrodes for high-energy Na-ion batteries. Curr Opin Chem Eng 13:36–44

    Article  Google Scholar 

  61. Bresser D, Buchholz D, Moretti A et al (2018) Alternative binders for sustainable electrochemical energy storage–the transition to aqueous electrode processing and bio-derived polymers. Energy Environ Sci 11:3096–3127

    Article  CAS  Google Scholar 

  62. Karkar Z, Guyomard D, Roué L et al (2017) A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes. Electrochim Acta 258:453–466

    Article  CAS  Google Scholar 

  63. Kovalenko I, Zdyrko B, Magasinski A et al (2011) A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334:75–79

    Article  CAS  PubMed  Google Scholar 

  64. Bayram O, Kiskan B, Demir E et al (2020) Advanced thermosets from sulfur and renewable benzoxazine and ionones via inverse vulcanization. ACS Sustainable 8:9145–9155

    Article  CAS  Google Scholar 

  65. Park GD, Kang YC (2018) Multiroom-structured multicomponent metal selenide–graphitic carbon–carbon nanotube hybrid microspheres as efficient anode materials for sodium-ion batteries. Nanoscale 10:8125–8132

    Article  CAS  PubMed  Google Scholar 

  66. Wang R, Feng L, Yang W et al (2017) Effect of different binders on the electrochemical performance of metal oxide anode for lithium-ion batteries. J Nanoscale Res Lett 12:1–11

    Article  Google Scholar 

  67. Shin D, Park H, Paik U (2017) Cross-linked poly (acrylic acid)-carboxymethyl cellulose and styrene-butadiene rubber as an efficient binder system and its physicochemical effects on a high energy density graphite anode for Li-ion batteries. J Electrochem Commun 77:103–106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Meral Aydin is supported by the Turkish Higher Education Council’s (YÖK) 100/2000 PhD Fellowship Program and 2211/C National PhD Scholarship Program in the Priority Fields in Science and Technology of the Scientific and Technological Research Council of Turkey (TÜBİTAK). The authors thank to Prof. Dr. Osman Ozturk for the X-ray photoelectron spectroscopy, Adem Sen for the XRD, and Ahmet Nazim for the scanning electron microscopy measurements. This paper is part of Meral Aydin’s PhD dissertation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rezan Demir-Cakan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 607 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, M., Ahsen, A.S. & Demir-Cakan, R. Ball mill–assisted synthesis of carbon-free SnSe nanoparticles for sodium-ion battery anodes. J Solid State Electrochem 27, 1075–1084 (2023). https://doi.org/10.1007/s10008-023-05416-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05416-x

Keywords

Navigation