Skip to main content
Log in

Rechargeable sodium-ion battery based on a cathode of copper hexacyanoferrate

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, the performance of copper (II) hexacyanoferrate(III) (CuHCF) as a cathode material for sodium-ion batteries was studied. The compound was synthesized by a precipitation reaction in aqueous solution in a closed system. The morphology and structure show nanoparticles agglomerated with sizes ranging between 40 and 70 nm and a crystalline phase with a cubic structure, respectively. The material exhibited a stable performance with a working potential of around 3.4 V vs. Na+/Na. The gravimetric capacity obtained is close to 30 mAh g−1 for 100 cycles at a rate of C/20, which is around half of the capacity for CuHCF when it encounters water in its structure, e.g., zeolite-type (60 mAh g−1), which is less than the theoretical capacity for this material (85.1 mAh g−1). CuHCF could be a promising cathode material for sodium-ion batteries considering its electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are mentioned before in the paragraph: Power density of 775 W/kg, at a rate of 12 C with a good ciclability of 25,000 charge/discharge cycles.

References

  1. Yabuuchi N, Kubota K, ahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682

    Article  CAS  PubMed  Google Scholar 

  2. Perveen T, Siddiq M, Shahzad N, Ihsan R, Ahmad A, Shahzad MI (2020) Prospects in anode materials for sodium ion batteries - a review. Renew Sustain Energy Rev 119:109549

    Article  CAS  Google Scholar 

  3. Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529

    Article  CAS  PubMed  Google Scholar 

  4. Guduru RK, Icaza JC (2016) A brief review on multivalent intercalation batteries with aqueous electrolytes. Nanomaterials 6:41

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chayambuka K, Mulder G, Danilov DL, Notten PHL (2018) Sodium-ion battery materials and electrochemical properties reviewed. Adv Energy Mater 8:1800079

    Article  Google Scholar 

  6. Wu X, Deng W, Qian J, Cao Y, Ai X, Yang H (2013) Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries. J Mater Chem A 1:10130

    Article  CAS  Google Scholar 

  7. Wang J, Mi C, Nie P, Dong S, Tang S, Zhang X (2018) Sodium-rich iron hexacyanoferrate with nickel doping as a high performance cathode for aqueous sodium ion batteries. J Electroanal Chem 818:10

    Article  CAS  Google Scholar 

  8. Liu Y, Qiao Y, Zhang W, Li Z, Ji X, Miao L, Yuan L, Hu X, Huang Y (2015) Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes. Nano Energy 12:386

    Article  CAS  Google Scholar 

  9. Wang L, Song J, Qiao R, Wray LA, Hossain MA, Chuang Y, Yang W, Lu Y, Evans D, Lee J, Vail S, Zhao X, Nishijima M, Kakimoto S, Goodenough JB (2015) Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries. J Am Chem Soc 137:2548

    Article  CAS  PubMed  Google Scholar 

  10. Lim C, Tan Z (2021) Prussian white with near-maximum specific capacity in sodium-ion batteries. ACS Appl Energy Mater 4:6214

    Article  CAS  Google Scholar 

  11. You Y, Wu XL, Yin YX, Guo YG (2013) A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. J Mat Chem A 45:14061

    Article  Google Scholar 

  12. Wessells CD, Huggins RA, Cui Y (2011) Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat Commun 2:550

    Article  PubMed  Google Scholar 

  13. Keggin JF, Miles FD (1936) Structure and formule of the Prussian blues and related compounds. Nature 137:577

    Article  CAS  Google Scholar 

  14. Ojwang DO, Grins J, Wardecki D, Valvo M, Renman V, Häggström L, Ericsson T, Gustafsson T, Mahmoud A, Hermann RP, Svensson G (2016) Structure characterization and properties of K-containing copper hexacyanoferrate. Inorg Chem 55:5924

    Article  CAS  PubMed  Google Scholar 

  15. Hurlbutt K, Wheeler S, Capone I, Pasta M (2018) Prussian blue analogs as battery materials. Joule 2:1950

    Article  CAS  Google Scholar 

  16. Åkerblom IE, Ojwang DO, Grins J, Svensson G (2017) A thermogravimetric study of thermal dehydration of copper hexacyanoferrate by means of model-free kinetic analysis. J Therm Anal Calorim 129:721

    Article  Google Scholar 

  17. Wang B, Han Y, Wang X, Bahlawane N, Pan H, Yan M, Jiang Y (2018) Prussian blue Analogs for Rechargeable Batteries. Iscience 3:110

  18. Zheng LQ, Li SJ, Lin HJ, Miao YY, Zhu L, Zhang ZJ (2014) Effects of water contamination on the electrical properties of 18650 lithium-ion batteries. Russ J Electrochem 50:904

    Article  CAS  Google Scholar 

  19. Song J, Wang L, Lu Y, Liu J, Guo B, Xiao P, Lee J, Yang X, Henkelman G, Goodenough JB (2015) Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J Am Chem Soc 137:2658

    Article  CAS  PubMed  Google Scholar 

  20. Wang L, Yuhao L, Liu J, Xu M, Cheng J, Zhang D, Goodenough JB (2013) A superior low-cost cathode for a Na-Ion battery. Angew Chem Int Ed 52:1964

    Article  CAS  Google Scholar 

  21. Ren W, Qin M, Zhu Z, Yan M, Qi L, Zhang L, Liu D, Mai L (2017) Activation of sodium storage sites in Prussian blue analogues via surface etching. Nano Lett 17:4713

    Article  CAS  PubMed  Google Scholar 

  22. Yuan Y, Wang J, Hu Z, Lei H, Tian D, Jiao S (2016) Na2Co3[Fe(CN)6]2: a promising cathode material for lithium-ion and sodium-ion batteries. J Alloys Compd 685:344

    Article  CAS  Google Scholar 

  23. Jiao S, Tuo J, Xie H, Cai Z, Wang S, Zhu J (2017) The electrochemical performance of Cu3[Fe(CN)6]2 as a cathode material for sodium-ion batteries. Mat Res Bull 86:194

    Article  CAS  Google Scholar 

  24. Wu X, Deng W, Qian J, Cao Y, Ai X, Yang H (2013) Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries. J Mat Chem A 1:10130

    Article  CAS  Google Scholar 

  25. Peng B, Sun Z, Jiao S, Li J, Wang G, Li Y, Jin X, Wang X, Li J, Zhang G (2019) Facile self-templated synthesis of P2-type Na0.7CoO2 microsheets as a long-term cathode for high-energy sodium-ion batteries. J Mat Chem A 7:13922

  26. Jiang Y, Zhou X, Li D, Cheng X, Liu F, Yu Y (2018) Highly reversible Na storage in Na3V2(PO4)3 by optimizing nanostructure and rational surface engineering. Adv Energy Mater 8:1800068

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from FONDECYT, Chile (grant no. 1210408), from VRIEA-PUCV (grant no. 039.438 NÚCLEO-PUCV and 125.737/22 DII-PUCV), from the Spanish Ministerio de Economía y Competitividad (Project MAT2017-87541-R), and from Junta de Andalucía (Group FQM-175) and from FONDEQUIP EQM150101. E. Navarrete and J. Aristizábal would like to acknowledge the financial support from postdoctoral project FONDECYT (N° 3200216 and 31210536, respectively). V. Rojas would like to acknowledge the kind support from his doctoral scholarship by ANID N° 21160733. F. Herrera thanks DICYT-USACH for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Muñoz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, V., Cáceres, G., López, S. et al. Rechargeable sodium-ion battery based on a cathode of copper hexacyanoferrate. J Solid State Electrochem 27, 865–872 (2023). https://doi.org/10.1007/s10008-023-05388-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05388-y

Navigation