Skip to main content
Log in

Cathode material for sodium-ion batteries based on manganese hexacyanoferrate: the role of the binder component

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Sodium manganese hexacyanoferrate (NaMnHCF) was synthesized by a hydrothermal method and investigated as a cathode material for sodium-ion batteries. The morphology and the structure of NaMnHCF were investigated by X-ray diffraction, scanning electron microscopy, and EDX analysis. New composition of NaMnHCF cathode material for sodium-ion batteries with eco-friendly water-based binder consisting of conducting polymer poly-3,4-ethylenedioxythiopene/polystyrene sulfonate (PEDOT:PSS) dispersion and carboxymethyl cellulose (СМС) was proposed. The electrochemical properties of NaMnHCF cathode material with conductive polymer binder were investigated by cyclic voltammetry and galvanostatic charge-discharge, and the results were compared with the performance of a conventional PVDF-bound material. It was shown that the initial discharge capacity of electrodes with conductive binder is 130 mAh g−1, whereas the initial discharge capacity of PVDF-bound electrodes was 109 mAh g−1 (both at current density 120 mA g−1, values normalized by NaMnHCF mass). The material with conductive binder also has better rate capability; however, it is losing in cycling capability to the electrode composition with conventional PVDF binder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  Google Scholar 

  2. Tarascon JM (2010) Is lithium the new gold? Nat Chem 2(6):510

    Article  CAS  Google Scholar 

  3. Eftekhari A, Kim DW (2018) Sodium-ion batteries: new opportunities beyond energy storage by lithium. J Power Sources 395:336–348

    Article  CAS  Google Scholar 

  4. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682

    Article  CAS  Google Scholar 

  5. Fang C, Huang Y, Zhang W, Han J, Deng Z, Cao Y, Yang H (2016) Routes to high energy cathodes of sodium-ion batteries. Adv Energy Mater 6(5):1501727

    Article  Google Scholar 

  6. Wang H, Li W, Liu D, Feng X, Wang J, Yang X, Zhang X, Zhu Y, Zhang Y (2017) Flexible electrodes for sodium-ion batteries: recent progress and perspectives. Adv Mater 29(45):1703012

    Article  Google Scholar 

  7. Lu Y, Wang L, Cheng J, Goodenough JB (2012) Prussian blue: a new framework of electrode materials for sodium batteries. Chem Commun 48(52):6544–6546

    Article  CAS  Google Scholar 

  8. Shen Z, Guo S, Liu C, Sun Y, Chen Z, Tu J, Liu S, Cheng J, Xie J, Cao G, Zhao X (2018) Na-rich Prussian White cathodes for long-life sodium-ion batteries. ACS Sustain Chem Eng 6(12):16121–16129

    Article  CAS  Google Scholar 

  9. Liu Y, Qiao Y, Zhang WX, Li Z, Ji X, Miao L, Yuan LX, Hu XL, Huang YH (2015) Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes. Nano Energy 12:386–393

    Article  CAS  Google Scholar 

  10. Kim DJ, Jung YH, Bharathi KK, Je SH, Kim DK, Coskun A, Choi JW (2014) An aqueous sodium ion hybrid battery incorporating an organic compound and a Prussian Blue derivative. Adv Energy Mater 4(12):1400133

    Article  Google Scholar 

  11. Asakura D, Li CH, Mizuno Y, Okubo M, Zhou HS, Talham DR (2013) Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: core@shell nanoparticles with enhanced cyclability. J Am Chem Soc 135(7):2793–2799

    Article  CAS  Google Scholar 

  12. Wang L, Lu YH, Liu J, Xu MW, Cheng JG, Zhang DW, Goodenough JB (2013) A superior low-cost cathode for a Na-ion battery. Angew Chem Int Ed 52(7):1964–1967

    Article  CAS  Google Scholar 

  13. Chen RJ, Huang YX, Xie M, Zhang QY, Zhang XX, Li L, Wu F (2016) Preparation of Prussian blue submicron particles with a pore structure by two-step optimization for Na-ion battery cathodes. ACS Appl Mater Interfaces 8(25):16078–16086

    Article  CAS  Google Scholar 

  14. Ren WH, Qin MS, Zhu ZX, Yan MY, Li Q, Zhang L, Liu DN, Mai LQ (2017) Activation of sodium storage sites in Prussian blue analogues via surface etching. Nano Lett 17(8):4713–4718

    Article  CAS  Google Scholar 

  15. Fernández-Ropero AJ, Piernas-Muñoz MJ, Castillo-Martínez E, Rojo T, Casas-Cabanas M (2016) Electrochemical characterization of NaFe2(CN)6 Prussian blue as positive electrode for aqueous sodium-ion batteries. Electrochim Acta 210:352–357

    Article  Google Scholar 

  16. Chen J, Wei L, Mahmood A, Pei Z, Zhou Z, Chen X, Chen Y (2020) Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion. Energy Storage Mater 25:585–612

    Article  Google Scholar 

  17. Song J, Wang L, Lu Y, Liu J, Guo B, Xiao P, Lee JJ, Yang XQ, Henkelman G, Goodenough JB (2015) Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J Am Chem Soc 137(7):2658–2664

    Article  CAS  Google Scholar 

  18. Kim DS, Yoo H, Park MS, Kim H (2019) Boosting the sodium storage capability of Prussian blue nanocubes by overlaying PEDOT:PSS layer. J Alloys Compd 791:385–390

    Article  CAS  Google Scholar 

  19. Nie P, Yuan J, Wang J, Le Z, Xu G, Hao L, Pang G, Wu Y, Dou H, Yan X, Zhang X (2017) Prussian blue analogue with fast kinetics through electronic coupling for sodium ion batteries. ACS Appl Mater Interfaces 9(24):20306–20312

    Article  CAS  Google Scholar 

  20. Jiang X, Liu H, Song J, Yin C, Xu H (2016) Hierarchical mesoporous octahedral K2Mn1−xCoxFe(CN)6 as a superior cathode material for sodium-ion batteries. J Mater Chem A 4(41):16205–16212

    Article  CAS  Google Scholar 

  21. Tang Y, Zhang W, Xue L, Ding X, Wang T, Liu X, Liu J, Li X, Huang Y (2016) Polypyrrole-promoted superior cyclability and rate capability of NaxFe[Fe(CN)6] cathodes for sodium-ion batteries. J Mater Chem A 4(16):6036–6041

    Article  CAS  Google Scholar 

  22. Lee HW, Wang RY, Pasta M, Lee SW, Liu N, Cui Y (2014) Manganese hexacyanomanganate open framework as a high capacity positive electrode material for sodium-ion batteries. Nat Commun 5(1):5280

    Article  CAS  Google Scholar 

  23. Jiang YZ, Yu SL, Wang BQ, Li Y, Sun WP, Lu YH, Yan M, Song B, Dou SX (2016) Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv Funct Mater 26(29):5315–5321

    Article  CAS  Google Scholar 

  24. Wang B, Han Y, Wang X, Pan H, Yan M (2018) Prussian blue analogs for rechargeable batteries. iScience 3:110–133

    Article  CAS  Google Scholar 

  25. Li Y, Hu J, Yang K, Cao B, Li Z, Yang L, Pan F (2019) Synthetic control of Prussian blue derived nano-materials for energy storage and conversion application. Mater Today Energy 14:100332

    Article  Google Scholar 

  26. Xie B, Zuo P, Wang L, Wang J, Huo H, He M, Shu J, Li H, Lou S, Yin G (2019) Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture. Nano Energy 61:201–210

    Article  CAS  Google Scholar 

  27. Zhang Q, Fu L, Luan J, Huang X, Tang Y, Xie H, Wang H (2018) Surface engineering induced core-shell Prussian Blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode. J Power Sources 395:305–313

    Article  CAS  Google Scholar 

  28. Xu Y, Wan J, Huang L, Ou M, Fan C, Wei P, Peng J, Liu Y, Qiu Y, Sun X, Fang C, Li Q, Han J, Huang Y, Alonso JA, Zhao Y (2019) Structure distortion induced monoclinic nickel hexacyanoferrate as high-performance cathode for Na-ion batteries. Adv Energy Mater 9(4):1803158

    Article  Google Scholar 

  29. Bie X, Kubota K, Hosaka T, Chihara K, Komaba S (2017) A novel K-ion battery: hexacyanoferrate(II)/graphite cell. J Mater Chem A 5(9):4325–4330

    Article  CAS  Google Scholar 

  30. You Y, Wu XL, Yin YX, Guo YG (2014) High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ Sci 7(5):1643–1647

    Article  CAS  Google Scholar 

  31. Yang DZ, Xu J, Liao XZ, Wang H, He YS, Ma ZF (2015) Prussian blue without coordinated water as a superior cathode for sodium-ion batteries. Chem Commun 51(38):8181–8184

    Article  CAS  Google Scholar 

  32. Yu SL, Li Y, Lu YH, Xu B, Wang QT, Yan M, Jiang YZ (2015) A promising cathode material of sodium iron-nickel hexacyanoferrate for sodium ion batteries. J Power Sources 275:45–49

    Article  CAS  Google Scholar 

  33. Wang X, Wang B, Tang Y, Xu BB, Liang C, Yana M, Jiang Y (2020) Manganese hexacyanoferrate reinforced by PEDOT coating towards high-rate and long-life sodium-ion battery cathode. J Mater Chem A 8(6):3222–3227

    Article  CAS  Google Scholar 

  34. Mullaliu A, Asenbauer J, Aquilanti G, Passerini S, Giorgetti M (2020) Highlighting the reversible manganese electroactivity in Na-rich manganese hexacyanoferrate material for Li- and Na-ion storage. Small Methods 4(1):1900529

    Article  CAS  Google Scholar 

  35. Gong W, Zeng R, Su S, Wan M, Rao Z, Xue L, Zhang W (2019) Ball-milling synthesis of ultrafine NayFexMn1-x[Fe(CN)6] as high-performance cathode in sodium-ion batteries. J Nanopart Res 21(12):274

    Article  CAS  Google Scholar 

  36. Moritomo Y, Urase S, Shibata T (2016) Enhanced battery performance in manganese hexacyanoferrate by partial substitution. Electrochim Acta 210:963–969

    Article  CAS  Google Scholar 

  37. Matsuda T, Takachi M, Moritomo Y (2013) A sodium manganese ferrocyanide thin film for Na-ion batteries. Chem Commun 49(27):2750–2752

    Article  CAS  Google Scholar 

  38. Sottmann J, Bernal FLM, Yusenko KV, Herrmann M, Emerich H, Wragg DS, Margadonna S (2016) In operando synchrotron XRD/XAS investigation of sodium insertion into the Prussian Blue analogue cathode material Na1.32Mn[Fe(CN)6]0.83·zH2O. Electrochim Acta 200:305–313

    Article  CAS  Google Scholar 

  39. Shen Z, Sun Y, Xie J, Liu S, Zhuang D, Zhang G, Zheng W, Cao G, Zhao X (2018) Manganese hexacyanoferrate/graphene cathodes for sodium-ion batteries with superior rate capability and ultralong cycle life. Inorg Chem Front 5(11):2914–2920

    Article  CAS  Google Scholar 

  40. Peng F, Yu L, Yuan S, Liao XZ, Wen J, Tan G, Feng F, Ma ZF (2019) Enhanced electrochemical performance of sodium manganese ferrocyanide by Na3(VOPO4)2F coating for sodium-ion batteries. ACS Appl Mater Interfaces 11(41):37685–37692

    Article  CAS  Google Scholar 

  41. Tang Y, Li W, Feng P, Zhou M, Wang K, Wang Y, Zaghib K, Jiang K (2020) High-performance manganese hexacyanoferrate with cubic structure as superior cathode material for sodium-ion batteries. Adv Funct Mater 30(10):1908754

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Center for X-ray Diffraction Methods, the Interdisciplinary Center for Nanotechnology, and the Resource Centre of Physical Methods of Surface Investigations of Research Park of Saint Petersburg State University for providing XRD, SEM, EDX, and XPS analyses.

Funding

This work was supported by Saint Petersburg State University (grant № 26455158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kondratiev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Dedicated to Professor Fritz Scholz on the occasion of his 65th birthday in recognition of his numerous contributions to fundamental and applied electrochemistry.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkreba, E.V., Apraksin, R.V., Tolstopjatova, E.G. et al. Cathode material for sodium-ion batteries based on manganese hexacyanoferrate: the role of the binder component. J Solid State Electrochem 24, 3049–3057 (2020). https://doi.org/10.1007/s10008-020-04746-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04746-4

Keywords

Navigation