Skip to main content
Log in

Electroanalytical instrumentation—how it all started: history of electrochemical instrumentation

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This review is a historic collection of old electrochemical and electroanalytical instruments, mostly concentrated on polarographs, potentiostats, pH meters, and titrators designed and commercially available from the 1920s to 1970s. The review briefly explains their operation and shows their photos. It is addressed to electrochemists who want to know what kind of instruments was used by previous generations of scientists and how the progress in electronics brought the instruments from very primitive to more sophisticated devices, still being far from the presently used computerized electrochemical analyzers. This review has a more educational aim rather than scientific in the present definition of being “scientific.” The collected references allow interested readers to find more scientific information on the electronic circuits used in the highlighted instruments, on the instruments operation and applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adopted from https://en.wikipedia.org/wiki/Oliver_Wolcott_Gibbs#/media/File:Gibbs_Oliver_Wolcott.jpg; public domain. B Luckow’s electrode arrangement for the electrodeposition of metals followed by their gravimetric analysis. Adopted from [8] with permission

Fig. 3
Fig. 4
Fig. 5

Adopted from https://knowledge.electrochem.org/encycl/art-p03-polarography.htm; public domain

Fig. 6

Adopted from https://www.muv.uio.no/uios-historie/fag/matematikk-naturvitenskap/kjemi/polarograf-for-dosent-prytz.html and https://nasregion.cz/byl-prvnim-a-bohuzel-dosud-i-poslednim-ceskym-vedcem-ktery-obdrzel-nobelovu-cenu-profesor-heyrovsky-a-kapka-rtuti-142115/ with permission

Fig. 7
Fig. 8

Adopted from Bard AJ, Inzelt G, Scholz F (Eds.) (2008), Electrochemical Dictionary, Springer, with permission

Fig. 9
Fig. 10
Fig. 11
Fig. 12

Adopted from https://cpb-us-e1.wpmucdn.com/blogs.uoregon.edu/dist/6/6681/files/2014/03/news13-2bj6605.pdf; public domain

Fig. 13

Adopted from Bard AJ, Inzelt G, Scholz F (Eds.) (2008), Electrochemical Dictionary, Springer, with permission

Fig. 14

Adopted from https://english.radio.cz/february-marks-100-years-invention-polarography-8741642; courtesy of Czech Academy of Sciences, with permission

Fig. 15

Adopted from https://www.rsc.org/images/Newsletter08_tcm18-117122.pdf; public domain

Fig. 16
Fig. 17

Adopted from https://en.wikipedia.org/wiki/Friedrich_Kohlrausch_(physicist); public domain; Wikipedia

Fig. 18

Adopted from the Yokogawa Electrical Works, Ltd., catalog (1979), open access

Fig. 19
Fig. 20

Adopted from the Princeton Applied Research Corporation catalog (1982), open access

Fig. 21
Fig. 22
Fig. 23
Fig. 24

Adopted from https://wie-tec.de/Bank-Elektrotechnik_1, public domain

Fig. 25
Fig. 26

Adopted from https://commons.wikimedia.org/wiki/Category:S%C3%B8ren_Peter_Lauritz_S%C3%B8rensen#/media/File:Soeren_Peter_Lauritz_Soerensen_1868-1939_2.jpg; public domain

Fig. 27

Adopted from https://www.periodpaper.com/products/1922-ad-bovie-potentiometer-arthur-h-thomas-h-ion-concentration-scientific-102822-iec1-070; public domain

Fig. 28

Adopted from https://www.chemistryworld.com/opinion/cremers-electrode/3008550.article; https://en.wikipedia.org/wiki/Zygmunt_Klemensiewicz; https://en.wikipedia.org/wiki/Fritz_Haber#/media/File:Fritz_Haber.png, respectively, public domains

Fig. 29

Adopted from https://artsandculture.google.com/asset/arnold-beckman-with-ph-meter/8QHVcn5f7EzvyA; public domain

Fig. 30

Adopted from https://www.sciencehistory.org/files/beckmanmodelgchfjpg-2; with permission

Fig. 31

Adopted from https://en.wikipedia.org/wiki/PH_meter; public domain

Fig. 32

Adopted from https://aphmuseum.org/record/coleman-model-3-ph-electrometer/; public domain

Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Adopted from http://waywiser.fas.harvard.edu/objects/15671/kohlrausch-drumtype-slide-wire-potentiometer;jsessionid=A7EF782726FC63EBF886A8B10DAC18A3?ctx=bc0a6ad5-a89f-4093-a81e-087e43d048a3&idx=36; public domain. B Helical potentiometer (Helipot) invented by Arnold O. Beckman in 1940 and used in his famous pH meters. Adopted from https://commons.wikimedia.org/wiki/File:Beckman_Helipot_potentiometer_SA1400A_2007.075.002.jpg; public domain

Fig. 41

Similar content being viewed by others

References

  1. Bard AJ (2007) The rise of voltammetry: from polarography to the scanning electrochemical microscope. J Chem Education 84(4):644–650

    Article  ADS  CAS  Google Scholar 

  2. Katz E (2011) Processing electrochemical signals at both sides of interface: electronic vs. chemical signal processing. J Solid State Electrochem 15(7–8):1471–1480

  3. Schwabe K, Suschke H-D, Wachler G (1980) Electrochemical instrumentation. Electrochim Acta 25(1):59–76

    Article  CAS  Google Scholar 

  4. Osteryoung J (1982) Developments in electrochemical instrumentation. Science 218(4569):261–265

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Barek J, Zima J (2003) Eighty years of polarography – history and future. Electroanalysis 15(5–6):467–472

    Article  CAS  Google Scholar 

  6. Sokolkov SV (2022) Evolution of the analytical signal in electrochemistry from electrocapillary curve to a digital electrochemical pattern of a multicomponent sample. Electrochem Sci Adv in press/early view e2100212

  7. Scholz F (2021) The anfractuous pathways which led to the development of electrochemical stripping techniques. J Solid State Electrochem 15:1509–1521

    Article  Google Scholar 

  8. Stock JT (1990) The genesis of electrogravimetry. Bull Hist Chem 7:17–19

    Google Scholar 

  9. Gibbs W (1864) Beitrage zur Chemie aus dem Laboratorium der Lawrence Scientific School. Z Anal Chem 3:327–336

    Article  Google Scholar 

  10. Gibbs W (1865) Contributions to chemistry from the laboratory of the Lawrence scientific school. Amer J Sci Arts 89:58–65

    Article  ADS  Google Scholar 

  11. Luckow C (1880) Ueber die Anwendung des elektrischen Stromes in der analytischen Chemie. Z Anal Chem 19:1–19

    Article  Google Scholar 

  12. Wrightson F (1876) Beitrage zur quantitativen Bestimmung der Metalle auf Elektrolytischem Wege. Z Anal Chem 15:297–306

    Article  Google Scholar 

  13. Schweder GP (1877) Zur elektrolytischen Bestimmung des Nickels und Kobalts. Berg-u-Huttenmann Z 36(5):11

    Google Scholar 

  14. Riche A (1877) Zur elektrolytischen Bestimmung des Mangans, Nickels, Zinks und Bleis. Compt Rend 85:226–229

    Google Scholar 

  15. Ohl W (1879) Die elcktrolytische Bestimmung von Kobalt, Nickel, Kupfer und dercn Vortheile in der analytischen Chemie. Z Anal Chem 18:523–531

    Article  Google Scholar 

  16. Clarke FW (1878) Zur elektrolytische Bestimmung des Quecksilbers und des Cadmiums. Amer J Sci Arts 16:200–201

    ADS  Google Scholar 

  17. Smith EF (1890) Electrochemical analysis. Blakiston, Philadelphia

    Google Scholar 

  18. Robinson LM (1989) Borrowing from Industry: Edgar Fahs Smith’s rotating anode and double-cup mercury cathode. In: Stock JT, Oma MV (eds) Electrochemistry, past and present. American Chemical Society, Washington, D.C., pp 458–468

    Chapter  Google Scholar 

  19. Stock JT (1989) Henry J. S. Sand (1873–1944), A well-remembered tutor. In: Stock JT, Orna MV (eds) Electrochemistry, past and present. American Chemical Society, Washington, D.C., pp 469–476

  20. Stock JT (1992) Robert Behrend’s foray into electrochemistry. J Chem Education 69:197–199

    Article  ADS  CAS  Google Scholar 

  21. Serjeant EP (1984) Potentiometry and potentiometric titrations Chemical Analysis: a series of monographs on analytical chemistry and its applications. Wiley-Interscience, Hoboken, New Jersey

    Google Scholar 

  22. Heyrovský M (2011) Polarography—past, present, and future. J Solid State Electrochem 15(7–8):1799–1803

    Article  Google Scholar 

  23. Furman NH, Bricker C, Whitesell EB (1942) Construction and operation of polarography. Ind Eng Chem Anal 14(4):333–340

    Article  CAS  Google Scholar 

  24. Abichandani CT, Jatkar SKK (1940) A simple polarograph. J Ind Inst Sci 23(A):131–137

  25. Lingane JJ (1946) Polarographic investigation of oxalate, citrate and tartrate complexes of ferric and ferrous iron. J Am Chem Soc 68(12):2448–2453

    Article  CAS  PubMed  Google Scholar 

  26. Philbrook GE, Grubb HM (1947) Improvements in polarographic instrumentation. Anal Chem 19(7):7–10

    Article  CAS  Google Scholar 

  27. Baumberger JP, Bardwell K (1943) Hydrogen electrode half-cell in polarography. Ind Eng Chem Anal Ed 15(10):639–641

    Article  CAS  Google Scholar 

  28. von Stackelberg M (1950) Polarographische Arbeitsmethoden. de Gruyter, Berlin

    Book  Google Scholar 

  29. Heyrovský J, Zuman P (1968) Practical polarography, an introduction for chemical students. Academic Press, London, pp 49–52

    Google Scholar 

  30. Lingane JJ (1949) Polarographic theory, instrumentation, and methodology. Anal Chem 21(1):45–60

    Article  CAS  Google Scholar 

  31. Offutt EB, Sorg LV (1950) A direct-reading polarography for determination of tetraethyllead in gasoline. Anal Chem 22(10):1234–1237

    Article  CAS  Google Scholar 

  32. Lingane JJ (1951) Polarography theory, instrumentation, and methodology. Anal Chem 23(1):86–97

    Article  CAS  Google Scholar 

  33. Copeland LC, Griffith FS (1950) Manual polarograph for rapid determinations of lead and cadmium in zinc. Anal Chem 22(10):1269–1271

    Article  CAS  Google Scholar 

  34. Luck JR, Mills F (1967) A mercury-drop synchronization device. J Electroanal Chem Interfacial Electrochem 13(1–2):149–151

    Article  CAS  Google Scholar 

  35. Metrohm – Editorial (1963) Recording polarographic analyzer. Anal Chem 35(13):107A

    Google Scholar 

  36. Heyrovský J (1947) The fundamental laws of polarography. Analyst 72(855):229–234

    Article  ADS  PubMed  Google Scholar 

  37. Airey L, Smales AA (1950) Mercury drop control: application to derivative and differential polarography. Analyst 75(891):287–304

    Article  ADS  CAS  Google Scholar 

  38. Lévêque MP (1949) Polarographie différentielle avec électrode gouttante unique. J Chim Phys 46:480–484

    Article  Google Scholar 

  39. Delahay P (1947) Nouvelle méthode de mesure électrotitrimétrique. Anal Chim Acta 1:19–32

    Article  CAS  Google Scholar 

  40. Matheson ZA, Nichols N (1938) The cathode ray oscillograph applied to the dropping mercury electrode. Trans Electrochem Soc 73(1):193–210

    Article  Google Scholar 

  41. Randles JEB (1948) A cathode ray polarography. Trans Faraday Soc 44:322–327

    Article  CAS  Google Scholar 

  42. Randles JEB (1948) A cathode ray polarograph. Part II.—The current-voltage curves. Trans Faraday Soc 44:327–338

    Article  CAS  Google Scholar 

  43. Müller RH, Garman RL, Droz ME, Petras J (1938) The cathode ray-tube polarography. Theory of method. Ind Eng Chem Anal Ed 10(6):339–341

  44. Kalvoda R (1965) Techniques of oscillographic polarography. Elsevier, Amsterdam

    Google Scholar 

  45. Heyrovský J, Kalvoda R (1960) Osillographische Polarographie mit Wechselstrom. Akademie-Verlag, Berlin

    Book  Google Scholar 

  46. Heyrovský M, Micka K (1967) Oscillographic polarography at controlled alternating current. In: Bard AJ (ed) Electroanalytical chemistry, vol 2. Marcel Dekker, New York

  47. Breyer B, Gutman F, Hacobian S (1950) Polarography with alternating currents. I. Outline of theory, apparatus and technique. Austr J Sci Res A 3:558–566

    ADS  Google Scholar 

  48. MacAleavy C (1941) Belgian Patent 443,003

    Google Scholar 

  49. MacAleavy C (1942) French Patent 886,848

    Google Scholar 

  50. Barker GC (1958) Square wave polarography and some related techniques. Anal Chim Acta 18:118–131

    Article  ADS  CAS  Google Scholar 

  51. Breyer B, Bauer HH (1963) Alternating current polarography and tensammetry. Interscience Publishers, London

    Google Scholar 

  52. Editorial, commercial (1963) Analyst 88(1045):ix

  53. Bond AM (1980) Modern polarographic methods in analytical chemistry. Marcel Dekker, New York, Chapter 8.1, pp. 391–399

    Google Scholar 

  54. Hickling A (1942) Studies in electrode polarisation. Part IV.—The automatic control of the potential of a working electrode. Trans Faraday Soc 38:27–33

    Article  CAS  Google Scholar 

  55. Caldwell CW, Parker RC, Diehl H (1944) Apparatus for automatic control of electrodeposition with graded cathode potential. Ind Eng Chem Anal Ed 16(8):532–535

    Article  CAS  Google Scholar 

  56. Diehl H (1948) Electrochemical analysis with graded cathode potential control. G.F. Smith Chemical Co., Columbus

    Book  Google Scholar 

  57. Penther CJ, Pompeo DJ (1949) Apparatus for electrolysis at controlled potential. Anal Chem 21(1):178–180

    Article  CAS  Google Scholar 

  58. Lamphere RW, Rogers LB (1950) Instrument for controlled-potential electrolysis. Anal Chem 22(3):463–468

    Article  CAS  Google Scholar 

  59. Krugers J, Keulemans AIM (eds) (1965) Practical instrumental analysis. Elsevier, Amsterdam, pp 144–145

    Google Scholar 

  60. Lingane JJ (1949) Multipurpose electroanalytical servo instrument. Anal Chem 21(4):497–499

    Article  CAS  Google Scholar 

  61. Hickling A (1942) Studies in electrode polarisation. Part IV. The automatic control of the potential of a working electrode. Trans Faraday Soc 38:27–33

    Article  CAS  Google Scholar 

  62. Dölling R (1998) Hans Wenking, born August 18th, 1923. A problem-solver for electrochemists. Mater Corros 49(8):535–538

    Article  Google Scholar 

  63. Allen MJ (1950) Electrolytic reductions at constant cathode potentials. Electronically controlled apparatus. Anal Chem 22(6):804–806

    Article  CAS  Google Scholar 

  64. Allen MJ (1958) Organic electrode processes. Reinhold Publishing Corp, New York, pp 21–31

    Google Scholar 

  65. Lingane JJ (1945) Automatic apparatus for electrolysis at controlled potential. Ind Eng Chem Anal Ed 17(5):332–333

    Article  CAS  Google Scholar 

  66. Ashley SEQ (1949) Electroanalysis. Anal Chem 21(1):70–75

    Article  CAS  Google Scholar 

  67. Buck RP, Rondinini S, Covington AK, Baucke FGK, Brett CMA, Camoes MF, Milton MJT, Mussini T, Naumann R, Pratt KW, Spitzer P, Wilson GS (2002) Measurement of pH. Definition, standards, and procedures (IUPAC Recommendations 2002). Pure Appl Chem 74(11):2169–2200

  68. Sörensen SPL (1909) Enzymstudien. II. Mitteilung. Über die Messung und die Bedeutung der Wasserstoffionenkoncentration bei enzymatischen Prozessen. Biochem Z 21:131–304

    Google Scholar 

  69. Rosenberg H (1935) Prof Max Cremer. Nature 136:172–173

    Google Scholar 

  70. Scholz F (2011) From the Leiden jar to the discovery of the glass electrode by Max Cremer. J Solid State Electrochem 15(1):5–14

    Article  CAS  Google Scholar 

  71. LEEDS NORTHRUP (1960) Anal Chem 32(2):84A

  72. Furman NH (1930) Potentiometric titrations. Ind Eng Chem Anal Ed 2(3):213–224

    Article  CAS  Google Scholar 

  73. Furman NH (1942) Potentiometric titrations. Ind Eng Chem Anal Ed 14(5):367–382

    Article  CAS  Google Scholar 

  74. Furman NH (1950) Potentiometric titrations. Anal Chem 22(1):33–41

    Article  CAS  Google Scholar 

  75. Muller RH, Lingane JJ (1948) Electronic trigger circuit for automatic potentiometric and photometric titrations. Anal Chem 20(9):795–797

    Article  CAS  Google Scholar 

  76. Katz M, Glenn RA (1952) Sodium aminoethoxide titration of weak acids in ethylenediamine. Anal Chem 24(7):1157–1163

    Article  CAS  Google Scholar 

  77. Brown JF, Volume WF (1956) An automatic Fischer titration unit for laboratory use. Analyst 81:308–315

    Article  ADS  CAS  Google Scholar 

  78. Lingane JJ (1948) Automatic potentiometric titrations. Anal Chem 22(4):285–292

    Article  Google Scholar 

  79. Delahay P (1948) Electrical differential method of measurement in electrotitrations. Anal Chem 20(12):1212–1215

    Article  CAS  Google Scholar 

  80. Van Lamoen FLJ, Borsten H (1955) Potentiometric method for Karl Fischer titration. Anal Chem 27(10):1638–1639

    Google Scholar 

  81. Penther CJ, Rolfson FB, Lykken L (1941) Continuous-reading electronic voltmeter for use with glass and other high-resistance electrode systems. Ind Eng Chem 13(11):831–834

    CAS  Google Scholar 

  82. Penther CJ, Rolfson FB (1943) Dual alternating current titrometer. Ind Eng Chem 15(5):337–340

    CAS  Google Scholar 

  83. Shaffer PA, Briglio A, Brockman, (1948) Instrument for automatic continuous titration. Anal Chem 20(11):1008–1014

    Article  CAS  Google Scholar 

  84. Richards TW, Heimrod GW (1902) On the accuracy of the improved voltameter. Proc Amer Acad Arts Sci 37(16):415–443

    Article  Google Scholar 

  85. Richards TW (1908) Note concerning the Silver Coulometer. Proc Amer Acad Arts Sci 44(3):91–94

    Article  Google Scholar 

  86. Washburn EW, Bates SJ (1912) The iodine coulometer and the value of the Faraday. J Amer Chem Soc 34(10):1341–1368

    Article  CAS  Google Scholar 

  87. Lehfeldt RA (1908) LVII. The electrochemical equivalents of oxygen and hydrogen. Philos Mag J Sci 15(89):614–627

  88. Lingane JJ (1945) Coulometric analysis. J Amer Chem Soc 67(11):1916–1922

    Article  CAS  Google Scholar 

  89. Page JA, Lingane JJ (1957) A hydrogen-nitrogen gas coulometer. Anal Chim Acta 16:175–179

    Article  CAS  Google Scholar 

  90. Kelley MT, Jones HC, Fisher DJ (1959) Electronic controlled-potential coulometric titrator. Anal Chem 31(5):956

    Article  CAS  Google Scholar 

  91. Gerhardt GE, Lawrence HC, Parsons JS (1955) Precision coulometric titrator. Anal Chem 27(11):1752–1754

    Article  CAS  Google Scholar 

  92. Lott PF (1965) XXII. Instrumentation for electrodeposition and coulometry - Part two. J Chem Educ 42(5):A361–A378

  93. Kolthoff IM (1930) Conductometric titrations. Ind Engin Chem 2(3):225–230

    CAS  Google Scholar 

  94. Delahay P (1948) Electrical differential method of measurement in electrotitrations. Application to conductometric titrations. Anal Chem 20(12):1215–1219

    Article  CAS  Google Scholar 

  95. Blaedel WJ, Malmstadt HV (1950) High-frequency titrations. A study of instruments. Anal Chem 22(6):734–742

    Article  CAS  Google Scholar 

  96. Reilley CN, McCurdy WH Jr (1953) Principles of high-frequency titrimetry. Anal Chem 25(1):86–93

    Article  CAS  Google Scholar 

  97. Anderson K, Bettis ES, Revinson D (1950) Stable high-frequency oscillator-type titrimeter. Anal Chem 22(6):743–746

    Article  CAS  Google Scholar 

  98. Whitnack GC (1948) Polarographic determination of free monomer in heteropolymerization reaction mixtures. Anal Chem 20(7):658–661

    Article  CAS  Google Scholar 

  99. Allsopp WE, Damerell VR (1949) Polarographic determination of tin in steel. Anal Chem 21(6):677–679

    Article  CAS  Google Scholar 

  100. Kraus KA, Holmberg RW, Borkowski CJ (1950) Automatic precision glass electrode. pH Measurement with a vibrating reed electrometer. Anal Chem 22(2):341–344

  101. Magdalena Nuñez M (2005) Progress in Electrochemistry Research. Nova Publishers

  102. Stevic Z, Stevic M, Radovanovic I, Stolic P, Milesevic M, Marjanovic M, Radivojević M, Petronic S (2021) Computer-controlled voltage/current source and response monitoring system for electrochemical investigations. Int J Electrochem Sci 16:210659

    Article  CAS  Google Scholar 

  103. Scholz F (2021) Glazunov’s electrography—the first electrochemical imaging and the first solid-state electroanalysis. J Solid State Electrochem 25(12):2705–2715

    Article  CAS  Google Scholar 

  104. Singh P (2021) Electrochemical Biosensors – Applications in Diagnostics, Therapeutics, Environment, and Food Management. Elsevier

    Google Scholar 

  105. Bollella P (2022) Enzyme-based amperometric biosensors: 60 years later … Quo Vadis? Anal Chim Acta 1234:340517

    Article  CAS  PubMed  Google Scholar 

  106. Inamuddin, Ahamed MI, Rezakazemi M (Eds.) (2021) Biofuel cells: materials and challenges. Wiley

  107. Philip N, Bartlett PM (Ed.) (2008) Bioelectrochemistry: fundamentals, experimental techniques and applications. Wiley

  108. Sterin I, Tverdokhlebova A, Katz E, Smutok O (2022) Multiple pH waves generated electrochemically and propagated from an electrode surface. Chem Commun 58:10516–10519

    Article  CAS  Google Scholar 

  109. Lemay S, White H (2016) Electrochemistry at the nanoscale: tackling old questions, posing new ones. Acc Chem Res 49(11):2371–2371

    Article  CAS  PubMed  Google Scholar 

  110. Katz E, Lioubashevski O, Willner I (2006) Magnetoswitchable single-electron charging of Au-nanoparticles using hydrophobic magnetic nanoparticles. Chem Commun 1109–1111

  111. Katz E (2014) Implantable bioelectronics. Devices, materials, and applications. Wiley

  112. Parlak O, Salleo A, Turner A (2020) Wearable bioelectronics. Elsevier

    Google Scholar 

  113. Hillman AR, Loveday DC, Swann MJ, Bruckenstein S, Wilde CP (1992) Analytical applications of the electrochemical quartz crystal microbalance. In: Edelman PG, Wang J (eds) Biosensors and chemical sensors, Chapter 12, vol 487, ACS Symposium Series, pp 150–163

  114. Kumar V, Sharma K, Sehgal R (Eds.) Conjugated polymers for next-generation applications, Volume 1: Synthesis, properties and optoelectrochemical devices. Elsevier

  115. Webster RD, Bond AM, Coles BA, Compton RG (1996) ESR-electrochemical cells: a comparative study. J Electroanal Chem 404(2):303–308

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Oleh Smutok thanks Human Frontier Science Program (HFSP) for the fellowship allowing his work in the USA. The authors thank Prof. Dr. Fritz Scholz (im Ruhestand/Emeritus Professor), Universität Greifswald, Institut für Biochemie, for proofreading the paper draft and for helpful advice. The authors thank the reviewers for very detailed and helpful suggestions resulting in significant improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oleh Smutok or Evgeny Katz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In memory of Petr Zuman (1926 – 2021) – one of the originators of polarography and Clarkson University Professor Emeritus.

figure d

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smutok, O., Katz, E. Electroanalytical instrumentation—how it all started: history of electrochemical instrumentation. J Solid State Electrochem 28, 683–710 (2024). https://doi.org/10.1007/s10008-023-05375-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05375-3

Keywords

Navigation