Skip to main content
Log in

Anodic processes in the alkaline Cu | Cu(II), glycine system—construction and analysis of mass transport–corrected Tafel plots

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The anodic behavior of the alkaline Cu | Cu(II), glycine system was investigated by RDE voltammetry combined with EQCM measurements. Well-defined current plateaus were observed on RDE voltammograms in the presence of the excess of ligand. Surface distribution of complexes and ligands in this region was analyzed within the framework of the mass transfer model considering the chemical interactions between species. The degree of surface complexation changes dramatically in the region of pseudo-limiting current due to a sharp decrease in the surface pH and formation of protonated ligands. Entire RDE voltammograms, corrected for mass transport phenomena, were transformed into linear Tafel plots using normalization of the anodic current density relative to the surface concentration of the deprotonated ligand. Empirical Tafel constants were used for estimation of anodic kinetic parameters supposing that the first stage of copper ionization involves the formation of a monoligand copper-glycinate complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Petrii OA, Nazmutdinov RR, Bronshtein MD, Tsirlina GA (2007) Electrochim Acta 52:3493–3504

    Article  CAS  Google Scholar 

  2. Guidelli R, Compton RG, Feliu RM, Gileadi E, Lipkowski J, Schmickler W, Trassatti S (2014) Pure Appl Chem 86(245–258):259–262

    Article  CAS  Google Scholar 

  3. Streeter I, Compton RG (2007) Electrochim Acta 52:4305–4311

    Article  CAS  Google Scholar 

  4. Batchelor-McAuley C, Li D, Compton RG (2020) ChemElectroChem 7:3844–3851

    Article  CAS  Google Scholar 

  5. Bek RYu, Rogozhnikov NA (1995) R J Electrochem 31:1225–1230

  6. Bek RYu, Shuraeva LI, Zherebilov AF, Zakharova NM (1996) R J Electrochem 32:834–836

  7. Bek RYu, Rogozhnikov NA, Kosolapov GV (1997) R J Electrochem 33:119–125

  8. Bek RYu, Rogozhnikov NA (1998) Electroanal Chem 447:109–115

  9. Bek RYu (2000) R J Electrochem 36:403–407

  10. Bek RYu, Shevtsova ON (2010) R J Electrochem 46:987–992

  11. Bek RYu, Shevtsova ON (2011) R J Electrochem 47:248–255

  12. Baltruschat H, Vielstich W (1983) J Electroanal Chem 154:141–153

    Article  CAS  Google Scholar 

  13. Survila A (2015) Electrochemistry of metal complexes. Applications from electroplating to oxide layer formation. Wiley, Weinheim

  14. Survila A, Uksienė V (1992) Electrochim Acta 37:745–749

    Article  CAS  Google Scholar 

  15. Survila A, Mockus Z, Kanapeckaitė S (2000) Electrochim Acta 46:571–577

    Article  CAS  Google Scholar 

  16. Survila A, Mockus Z, Juškėnas R, Jasulaitienė V (2001) J Appl Electrochem 31:1109–1116

    Article  CAS  Google Scholar 

  17. Būdienė J, Survilienė A, Survila A (2004) Russ J Electrochem 40:394–399

    Article  Google Scholar 

  18. Survila A, Mockus Z, Kanapeckaitė S, Pileckienė J, Stalnionis G (2011) Russ J Electrochem 47:129–135

    Article  CAS  Google Scholar 

  19. Survila A, Mockus Z, Kanapeckaitė S, Stalnionis G (2013) Electrochim Acta 94:307–313

    Article  CAS  Google Scholar 

  20. Survila A, Kanapeckaitė S, Staišiūnas L (2018) Electrochim Acta 259:1045–1052

    Article  CAS  Google Scholar 

  21. Spudas L, Survila A (1983) Proc Lithuanian Acad Sci Series B 135:17–23

    Google Scholar 

  22. Survila A, Kanapeckaitė S (2020) J Electroanal Chem 862:114035

    Article  CAS  Google Scholar 

  23. Survila A, Kanapeckaitė S, Girčienė O, Gudavičiūtė L (2021) J Elechem Soc 168:076507

    Article  CAS  Google Scholar 

  24. Kublanovsky V, Litovchenko K (2000) J Electroanal Chem 495:10–18

    Article  CAS  Google Scholar 

  25. Kačena V, Matoušek L (1953) Collect Czech Chem Commun 18:294–301

    Article  Google Scholar 

  26. Hilbert F (1969) Habilitationschrift. Universität Graz

  27. Miyoshi Y, Lorenz WJ (1970) Berichte phys Chem 74:412–416

    CAS  Google Scholar 

  28. Aksu S, Doyle FM (2001) J Electrochem Soc 148:B51–B57

    Article  CAS  Google Scholar 

  29. Skrypnikova EA, Kaluzhina SA, Popova EV (2008) ECS Trans 13:7–12

    Article  CAS  Google Scholar 

  30. O’Connor L (2018) K, Eksteen JJ. Oraby EA 181:221–229

    Google Scholar 

  31. Bek RYu, Shuraeva LI (1997) R J Electrochem 33:114–118

  32. Milevičius R, Spudas L, Survila A (1987) Proc Lithuanian Acad Sci. Series B 159:16–24

    Google Scholar 

  33. Matulis J, Sližys R (1964) Electrochim Acta 9:1177–1188

    Article  CAS  Google Scholar 

  34. Vetter KJ (1967) Electrochemical Kinetics. Academic Press, New York

    Google Scholar 

  35. Survila A, Kanapeckaitė S, Staišiūnas L, Gudavičiūtė L, Girčienė O (2022) Chemija 33:12–16

    Article  CAS  Google Scholar 

  36. James BR, Williams RJP (1961) J Chem Soc 2007–2019

  37. He YY, Luo M, Zhang XY, Meng J (2015) Electrochim Acta 165:416–421

    Article  CAS  Google Scholar 

  38. Tsirlina GA, Petrii OA, Nazmutdinov RR, Glukhov DV (2002) Russ J Electrochem 38:132–140

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvydas Survila.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Survila, A., Kanapeckaitė, S. & Staišiūnas, L. Anodic processes in the alkaline Cu | Cu(II), glycine system—construction and analysis of mass transport–corrected Tafel plots. J Solid State Electrochem 27, 1813–1820 (2023). https://doi.org/10.1007/s10008-022-05365-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05365-x

Keywords

Navigation