Skip to main content
Log in

Electroplated wear and corrosion–resistant Co-Mo/CeO2 composite coatings for reducing mold fouling application

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Rubber tires, as an important part of automobiles, are produced by molding operation under molten temperature and high pressure. However, mold fouling during the vulcanization process is a rock-ribbed problem that not only leads to the loss in productivity and degradation of product quality but also results in severe accidents and enormous economic losses. In this work, a promising Co-Mo/CeO2 composite coating was electroplated and investigated to solve the mold fouling problem. The effect of CeO2 content on the surface morphology, microstructure, hardness, tribological and electrochemical behavior is systematically studied. With an addition of 10 g/L CeO2, the Co-Mo/CeO2 composite coating not only possesses the highest microhardness, the best wear and corrosion resistance but also features hydrophobicity and remarkable mold antifouling performance. This study offers a new strategy for producing composite coatings with excellent performance to reduce mold fouling in practical tire industry applications.

Graphical Abstract

Co-Mo/CeO2 composite coatings with excellent corrosion and wear resistance as well as low surface energy were simply electrodeposited and applicated for antifouling in tire mold for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lyu M, Bao X, Zhu R, Matthews R (2020) State-of-the-art outlook for light-duty vehicle emission control standards and technologies in China, Clean Technol Environ. Policy 22:757–771. https://doi.org/10.1007/s10098-020-01834-x

    Article  CAS  Google Scholar 

  2. Dvorak Z, Shejbalova D, Hanulikova B (2018) Infrared analysis of fouling during Epdm curing studied on molds made of steel and aluminium alloys. Rubber Chem Technol 91:390–400. https://doi.org/10.5254/rct.18.81662

    Article  CAS  Google Scholar 

  3. Liu C, Zhuang M, Huang Q, Mai Y, Zhang L, Jie X (2021) Investigation of vulcanization fouling behavior of biomimetic liquid-infused slippery surfaces. J Mater Sci 56:16290–16306. https://doi.org/10.1007/s10853-021-06303-4

    Article  CAS  Google Scholar 

  4. Hornsby PR, Singh I, Daley JR, Firth J (2013) Mould fouling of elastomers during injection moulding. Plast Rubber Compos 35:331–339. https://doi.org/10.1179/174328906x143831

    Article  Google Scholar 

  5. Mai YJ, Jie XH, Liu LL, Yu N, Zheng XX (2012) The study on vulcanization fouling behavior of nanocrystalline layer. Surf Interface Anal 44:282–287. https://doi.org/10.1002/sia.3799

    Article  CAS  Google Scholar 

  6. Montanari M, Sangiorgi A, Campodoni E, Bassi G, Gardini D, Montesi M, Panseri S, Sanson A, Tampieri A, Sandri M (2022) Additive-free gelatine-based devices for chondral tissue regeneration: shaping process comparison among mould casting and three-dimensional printing. Polymers (Basel). 14. https://doi.org/10.3390/polym14051036.

  7. Li F, Meng J, Ye J, Yang B, Tian Q, Deng C (2014) Surface modification of PES ultrafiltration membrane by polydopamine coating and poly(ethylene glycol) grafting: morphology, stability, and anti-fouling. Desalination 344:422–430. https://doi.org/10.1016/j.desal.2014.04.011

    Article  CAS  Google Scholar 

  8. Soucek MD, Dworak DP, Chakraborty R (2007) A new class of silicone resins for coatings. J Coat Technol Res 4:263–274. https://doi.org/10.1007/s11998-007-9044-x

    Article  CAS  Google Scholar 

  9. Critchlow GW, Litchfield RE, Sutherland I, Grandy DB, Wilson S (2006) A review and comparative study of release coatings for optimised abhesion in resin transfer moulding applications. Int J Adhes Adhes 26:577–599. https://doi.org/10.1016/j.ijadhadh.2005.09.003

    Article  CAS  Google Scholar 

  10. Wang DY, Chiu MC (2001) Characterization of Cr2O3/CrN duplex coatings for injection molding applications. Surf Coat Technol 137:164–169. https://doi.org/10.1016/S0257-8972(00)01109-9

    Article  CAS  Google Scholar 

  11. Vera J, Brulez A-C, Contraires E, Larochette M, Trannoy-Orban N, Pignon M, Mauclair C, Valette S (2017) Factors influencing microinjection molding replication quality. J Micromech Microeng 28:015004. https://doi.org/10.1088/1361-6439/aa9a4e

    Article  CAS  Google Scholar 

  12. Shalnov KV, Uemura K, Ito Y (2012) Consideration on surface modification of steel dies to reducing the plastic sticking in the forming process. Tribol 7:190–200. https://doi.org/10.2474/trol.7.190

    Article  Google Scholar 

  13. Omar IMA (2021) Electrodeposition of Ni-Co film: a review. Int J Electrochem Sci 16:150962. https://doi.org/10.20964/2021.01.16

  14. Das S, Kumar S, Samal SK, Mohanty S, Nayak SK (2018) A review on superhydrophobic polymer nanocoatings: recent development and applications. Ind Eng Chem Res 57:2727–2745. https://doi.org/10.1021/acs.iecr.7b04887

    Article  CAS  Google Scholar 

  15. Liu C, Huang X, Xu R, Mai Y, Zhang L, Jie X (2021) Microstructure and properties of nanocrystalline Ni-Mo coatings prepared by ultrasound-assisted pulse electrodeposition. J Mater Eng Perform 30:2514–2525. https://doi.org/10.1007/s11665-021-05570-1

    Article  CAS  Google Scholar 

  16. Zhou QF, Lu LY, Yu LN, Xu XG, Jiang Y (2013) Multifunctional Co-Mo films fabricated by electrochemical deposition. Electrochim Acta 106:258–263. https://doi.org/10.1016/j.electacta.2013.05.094

    Article  CAS  Google Scholar 

  17. Wang L, Gao Y, Xu T, Xue Q (2006) A comparative study on the tribological behavior of nanocrystalline nickel and cobalt coatings correlated with grain size and phase structure. Mater Chem Phys 99:96–103. https://doi.org/10.1016/j.matchemphys.2005.10.014

    Article  CAS  Google Scholar 

  18. Gómez E, Pellicer E, Vallés E (2004) Electrodeposition of soft-magnetic cobalt-molybdenum coatings containing low molybdenum percentages. J Electroanal Chem 568:29–36. https://doi.org/10.1016/j.jelechem.2003.12.032

    Article  CAS  Google Scholar 

  19. Gómez E, Pellicer E, Alcobé X, Vallés E (2004) Properties of Co-Mo coatings obtained by electrodeposition at pH 6.6. J Solid State Electrochem 8:497–504. https://doi.org/10.1007/s10008-004-0495-z

    Article  CAS  Google Scholar 

  20. Pellicer E, Gómez E, Vallés E (2006) Use of the reverse pulse plating method to improve the properties of cobalt-molybdenum electrodeposits. Surf Coat Technol 201:2351–2357. https://doi.org/10.1016/j.surfcoat.2006.04.011

    Article  CAS  Google Scholar 

  21. Krawiec H, Vignal V, Latkiewicz M, Herbst F (2018) Structure and corrosion behaviour of electrodeposited Co-Mo/TiO2 nano-composite coatings. Appl Surf Sci 427:1124–1134. https://doi.org/10.1016/j.apsusc.2017.08.111

    Article  CAS  Google Scholar 

  22. Krawiec H, Vignal V, Krystianiak A, Gaillard Y, Zimowski S (2019) Mechanical properties and corrosion behaviour after scratch and tribological tests of electrodeposited Co-Mo/TiO2 nano-composite coatings. Appl Surf Sci 475:162–174. https://doi.org/10.1016/j.apsusc.2018.12.099

    Article  CAS  Google Scholar 

  23. Zhou X, Shen Y (2013) Beneficial effects of CeO2 addition on microstructure and corrosion behavior of electrodeposited Ni nanocrystalline coatings. Surf Coat Technol 235:433–446. https://doi.org/10.1016/j.surfcoat.2013.07.070

    Article  CAS  Google Scholar 

  24. Gómez E, Pellicer E, Vallés E (2003) Influence of the bath composition and the pH on the induced cobalt-molybdenum electrodeposition. J Electroanal Chem 556:137–145. https://doi.org/10.1016/s0022-0728(03)00339-5

    Article  Google Scholar 

  25. Liu C, Wei D, Xu R, Mai Y, Zhang L, Jie X (2020) Electroplated Co-Ni/WS2 composite coating with excellent tribological and anticorrosion performance. Tribol Trans 63:857–866. https://doi.org/10.1080/10402004.2020.1759742

    Article  CAS  Google Scholar 

  26. Wang ZL, Feng XD (2003) Polyhedral shapes of CeO2 nanoparticles. J Phys Chem 107:13563–13566. https://doi.org/10.1021/jp036815m

    Article  CAS  Google Scholar 

  27. Srivastava M, William Grips VK, Rajam KS (2010) Electrodeposition of Ni-Co composites containing nano-CeO2 and their structure, properties. Appl Surf Sci 257:717–722. https://doi.org/10.1016/j.apsusc.2010.07.046

    Article  CAS  Google Scholar 

  28. Guglielmi N (1972) Kinetics of the deposition of inert particles from electrolytic baths. J Electrochem Soc 119:1009. https://doi.org/10.1149/1.2404383

    Article  CAS  Google Scholar 

  29. Cabral-Miramontes JA (2019) Corrosion behavior of Zn-TiO2 and Zn-ZnO electrodeposited coatings in 3.5% NaCl solution. Int J Electrochem Sci 4226–4239. https://doi.org/10.20964/2019.05.10

  30. Sheng M, Weng W, Wang Y, Wu Q, Hou S (2018) Co-W/CeO2 composite coatings for highly active electrocatalysis of hydrogen evolution reaction. J Alloys Compd 743:682–690. https://doi.org/10.1016/j.jallcom.2018.01.356

    Article  CAS  Google Scholar 

  31. Wang C, Shen L, Qiu M, Tian Z, Jiang W (2017) Characterizations of Ni-CeO2 nanocomposite coating by interlaced jet electrodeposition. J Alloys Compd 727:269–277. https://doi.org/10.1016/j.jallcom.2017.08.105

    Article  CAS  Google Scholar 

  32. Shi Z, Shum P, Zhou Z, Li LK-Y (2017) Effect of oxygen flow ratio on the wetting behavior, microstructure and mechanical properties of CeO2-x coatings prepared by magnetron sputtering. Surf Coat Technol 320:333–338. https://doi.org/10.1016/j.surfcoat.2016.12.055

    Article  CAS  Google Scholar 

  33. Wang D, Sun Q, Hokkanen MJ, Zhang C, Lin FY, Liu Q, Zhu SP, Zhou T, Chang Q, He B, Zhou Q, Chen L, Wang Z, Ras RHA, Deng X (2020) Design of robust superhydrophobic surfaces. Nature 582:55–59. https://doi.org/10.1038/s41586-020-2331-8

    Article  CAS  PubMed  Google Scholar 

  34. Halim J, Abdel-Karim R, El-Raghy S, Nabil M, Waheed A (2012) Electrodeposition and characterization of nanocrystalline Ni-Mo catalysts for hydrogen production. J Nanomater 2012:1–9. https://doi.org/10.1155/2012/845673

    Article  CAS  Google Scholar 

  35. Erler F, Jakob C, Romanus H, Spiess L, Wielage B, Lampke T, Steinhäuser S (2003) Interface behaviour in nickel composite coatings with nano-particles of oxidic ceramic. Electrochim Acta 48:3063–3070. https://doi.org/10.1016/s0013-4686(03)00380-3

    Article  CAS  Google Scholar 

  36. Sharma A, Bhattacharya S, Das S, Das K (2013) Fabrication of Sn-Ag/CeO2 electro-composite solder by pulse electrodeposition. Metall Mater Trans A Phys Metall Mater Sci 44:5587–5601. https://doi.org/10.1007/s11661-013-1894-5

    Article  CAS  Google Scholar 

  37. Sedlaček M, Podgornik B (2017) Design and tribological performance of textured surfaces. Mater Perform Charact 6:68–78. https://doi.org/10.1520/MPC20160022

    Article  Google Scholar 

  38. Qi J, Liu C, Li C, Jiang M (2016) Viscous properties of new mould flux based on aluminate system with CeO2 for continuous casting of RE alloyed heat resistant steel. J Rare Earths 34:328–335. https://doi.org/10.1016/s1002-0721(16)60032-7

    Article  CAS  Google Scholar 

  39. Gültekin D, Duru E, Akbulut H (2021) Improved wear behaviors of lead-free electroless Ni B and Ni-B/CeO2 composite coatings. Surf Coat Technol 422. https://doi.org/10.1016/j.surfcoat.2021.127525

  40. Bi P, Li H, Zhao G, Ran M, Cao L, Guo H, Xue Y (2019) Robust super-hydrophobic coating prepared by electrochemical surface engineering for corrosion protection. Coatings 9. https://doi.org/10.3390/coatings9070452

  41. Wang L, Chen M, Liu H, Jiang C, Ji V, Moreira F (2017) Optimisation of microstructure and corrosion resistance of Ni-Ti composite coatings by the addition of CeO2 nanoparticles. Surf Coat Technol 331:196–205. https://doi.org/10.1016/j.surfcoat.2017.10.049

    Article  CAS  Google Scholar 

  42. Wang P, Zhang D, Qiu R, Wu J (2014) Super-hydrophobic metal-complex film fabricated electrochemically on copper as a barrier to corrosive medium. Corros Sci 83:317–326. https://doi.org/10.1016/j.corsci.2014.02.028

    Article  CAS  Google Scholar 

  43. Nemeş PI, Zaharescu M, Muresan LM (2012) Initial corrosion behavior of composite coatings obtained by co-electrodeposition of zinc with nanoparticles of Ti and Ce oxides. J Solid State Electrochem 17:511–518. https://doi.org/10.1007/s10008-012-1901-6

    Article  CAS  Google Scholar 

  44. Shejbalova D, Dvorak Z (2019) The influence of mould cavities´ surface structure on their contamination when processing polymers. Mater Sci Forum 952:188–197. https://doi.org/10.4028/www.scientific.net/MSF.952.188

    Article  Google Scholar 

Download references

Funding

The authors are grateful to the financial support of the Science and Technology Plan of Guangzhou (202201010495), the National Natural Science Foundation of China (51805089) and Training Programs of Innovation and Entrepreneurship for Undergraduates (xj2022118450648).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cansen Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tai, X., Liu, C., Chen, W. et al. Electroplated wear and corrosion–resistant Co-Mo/CeO2 composite coatings for reducing mold fouling application. J Solid State Electrochem 27, 679–694 (2023). https://doi.org/10.1007/s10008-022-05361-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05361-1

Keywords

Navigation