Skip to main content
Log in

Bioinspired slippery antifouling Co-CeO2/MoS2 coatings with excellent mechanical robustness and corrosion resistance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Rubber tire mold fouling is a severe problem leading to mold surface corrosion, tire defects, and extra energy consumption. Traditional mechanical and chemical cleaning is inefficient and induces mold surface damage. Low surface energy organic coating displays antiadhesive behavior but is susceptible to wear. Here, we develop a bioinspired Co-CeO2/MoS2 coating with effective mechanical robustness, corrosion resistance, and antifouling behavior by leveraging a slippery liquid-infused surface (SLIPS) strategy. The micro-nanostructure of the coating serves as mechanical stability and anticorrosion skeleton with the infused lubricant acting as a slippery antifouling surface. The variation of microstructure, mechanical strength, corrosion resistance, and antifouling behavior of the coating with individual and synergistic addition of CeO2 and MoS2 is systematically characterized. The slippery Co-CeO2/MoS2 coating shows excellent mechanical stiffness, corrosion resistance, and antifouling performances in rubber vulcanization conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data and code availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Lyu M, Bao X, Zhu R, Matthews R (2020) State-of-the-art outlook for light-duty vehicle emission control standards and technologies in China. Clean Technol Envir 22:757–771. https://doi.org/10.1007/s10098-020-01834-x

    Article  CAS  Google Scholar 

  2. Sommer JG, Grover HN, Suman PT (1976) In-place cleaning of rubber curing molds. Rubber Chem Technol 49:1129–1141. https://doi.org/10.5254/1.3535000

    Article  CAS  Google Scholar 

  3. Mai YJ, Jie XH, Liu LL, Yu N, Zheng XX (2012) The study on vulcanization fouling behavior of nanocrystalline layer. Surf Interface Anal 44:282–287. https://doi.org/10.1002/sia.3799

    Article  CAS  Google Scholar 

  4. Li S, Ren Z (2021) Design of laser cleaning mold device and its control system. Int Core J Eng 7:35–38. https://doi.org/10.6919/ICJE.202103_7(3).0006

    Article  CAS  Google Scholar 

  5. Fragassa C, Ippoliti M (2016) Technology assessment of tire mould cleaning systems and quality finishing. Int J Qual Res 10(3):523–546. https://doi.org/10.18421/IJQR10.03-06

  6. Montanari M, Sangiorgi A, Campodoni E, Bassi G, Gardini D, Montesi M, Panseri S, Sanson A, Tampieri A, Sandri M (2022) Additive-free gelatine-based devices for chondral tissue regeneration: shaping process comparison among mould casting and three-dimensional printing. Polymers 14(5):1–18. https://doi.org/10.3390/polym14051036

    Article  CAS  Google Scholar 

  7. Li F, Meng J, Ye J, Yang B, Tian Q, Deng C (2014) Surface modification of PES ultrafiltration membrane by polydopamine coating and poly(ethylene glycol) grafting: morphology, stability, and anti-fouling. Desalination 344:422–430. https://doi.org/10.1016/j.desal.2014.04.011

    Article  CAS  Google Scholar 

  8. Soucek MD, Dworak DP, Chakraborty R (2007) A new class of silicone resins for coatings. J Coat Technol Res 4:263–274. https://doi.org/10.1007/s11998-007-9044-x

    Article  CAS  Google Scholar 

  9. Critchlow GW, Litchfield RE, Sutherland I, Grandy DB, Wilson S (2006) A review and comparative study of release coatings for optimised abhesion in resin transfer moulding applications. Int J Adhes Adhes 26:577–599. https://doi.org/10.1016/j.ijadhadh.2005.09.003

    Article  CAS  Google Scholar 

  10. Guo Z, Liu W, Su B-L (2011) Superhydrophobic surfaces: from natural to biomimetic to functional. J Colloid Interf Sci 353:335–355. https://doi.org/10.1016/j.jcis.2010.08.047

    Article  CAS  Google Scholar 

  11. Wong TS, Kang SH, Tang SKY, Smythe EJ, Hatton BD, Grinthal A, Aizenberg J (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–447. https://doi.org/10.1038/nature10447

    Article  CAS  PubMed  Google Scholar 

  12. Getaneh SA, Temam AG, Nwanya AC, Ejikeme PM, Ezema FI (2023) Advances in bioinspired superhydrophobic surface materials: a review on preparation, characterization and applications. Hybrid Adv 3:1–19. https://doi.org/10.1016/j.hybadv.2023.100077

    Article  Google Scholar 

  13. Sotoudeh F, Mousavi SM, Karimi N, Lee BJ, Abolfazli-Esfahani J, Manshadi MKD (2023) Natural and synthetic superhydrophobic surfaces: a review of the fundamentals, structures, and applications. Alex Eng J 68:587–609. https://doi.org/10.1016/j.aej.2023.01.058

    Article  Google Scholar 

  14. Villegas M, Zhang Y, Abu Jarad N, Soleymani L, Didar TF (2019) Liquid-infused surfaces: a review of theory, design, and applications. ACS Nano 13:8517–8536. https://doi.org/10.1021/acsnano.9b04129

    Article  CAS  PubMed  Google Scholar 

  15. Samaha MA, Gad-el-Hak M (2021) Slippery surfaces: a decade of progress. Phys Fluids 33:071301. https://doi.org/10.1063/5.0056967

    Article  CAS  Google Scholar 

  16. Li J, Ueda E, Paulssen D, Levkin PA (2019) Slippery lubricant-infused surfaces: properties and emerging applications. Adv Funct Mater 29:1–13. https://doi.org/10.1002/adfm.201802317

    Article  CAS  Google Scholar 

  17. Chen Q, He Y, Yan S (2023) Study on construction and corrosion resistance of silanol-modified Ni-P-WS2 superhydrophobic composite coatings. J Solid State Electrochem. https://doi.org/10.1007/s10008-023-05645-0

    Article  PubMed  Google Scholar 

  18. Zhou H, Yan S, He Y (2022) Superhydrophobic surface based on micro/nano structured ZnO nanosheets for high-efficiency anticorrosion. J Solid State Electrochem 26:2515–2525. https://doi.org/10.1007/s10008-022-05273-0

    Article  CAS  Google Scholar 

  19. Xin L, Li P, Li H, Sun W, Zhang C, Zhang K, Yin X, Yu S (2023) Fabrication of decoupling coatings with robustness and superhydrophobicity for anti-icing and anti-corrosion applications. J Mater Sci 58:6038–6054. https://doi.org/10.1007/s10853-023-08410-w

    Article  CAS  Google Scholar 

  20. Tripathi D, Ray P, Singh AV, Kishore V, Singh SL (2023) Durability of slippery liquid-infused surfaces: challenges and advances. Coatings 13(6):1–34. https://doi.org/10.3390/coatings13061095

    Article  CAS  Google Scholar 

  21. Manoharan K, Bhattacharya S (2019) Superhydrophobic surfaces review: functional application, fabrication techniques and limitations. J Micromanufacturing 2:59–78. https://doi.org/10.1177/2516598419836345

    Article  Google Scholar 

  22. Li Z, Guo Z (2023) Self-healing system of superhydrophobic surfaces inspired from and beyond nature. Nanoscale 15:1493–1512. https://doi.org/10.1039/D2NR05952E

    Article  CAS  PubMed  Google Scholar 

  23. Yitzhack N, Tereschuk P, Sezin (2020) Aluminum electrodeposition from a non-aqueous electrolyte—a combined computational and experimental study. J Solid State Electrochem 24:2833–2846. https://doi.org/10.1007/s10008-020-04626-x

  24. Chen C, Ding L, Li Q (2021) Effects of four carboxyl-containing additives on imitation gold electroplating Cu-Zn-Sn alloys in an HEDP system. J Solid State Electrochem 25:1361–1371. https://doi.org/10.1007/s10008-021-04914-0

    Article  CAS  Google Scholar 

  25. Ma C, Wang SC, Walsh FC (2015) Electrodeposition of nanocrystalline nickel and cobalt coatings. Trans IMF 93:8–17. https://doi.org/10.1179/0020296714Z.000000000202

    Article  CAS  Google Scholar 

  26. Rahman A, Chowdhury MA, Hossain N, Rana M, Alam MJ (2022) A review of the tribological behavior of electrodeposited cobalt (Co) based composite coatings. Compos Part C Open 9:1–16. https://doi.org/10.1016/j.jcomc.2022.100307

    Article  CAS  Google Scholar 

  27. Yu H, Guo Q, Wang C, Cao G, Liu Y (2023) Preparation and performance of PANI/CNTs composite coating on 316 stainless steel bipolar plates by pulsed electrodeposition. Prog Org Coat 182:1–9. https://doi.org/10.1016/j.porgcoat.2023.107611

    Article  CAS  Google Scholar 

  28. Xijing L, Yong C (2023) Effect of SiO2 nanoparticles on the hardness and corrosion resistance of NiW/SiO2 nano composite coating prepared by electrodeposition. Int J Electrochem Sc 18:1–6. https://doi.org/10.1016/j.ijoes.2023.100138

    Article  Google Scholar 

  29. Zhan K, Wang W, Li F, Cao J, Liu J, Yang Z, Wang Z, Zhao B (2023) Microstructure and properties of graphene oxide reinforced copper-matrix composite foils fabricated by ultrasonic assisted electrodeposition. Mater Sci Eng A 872:1–15. https://doi.org/10.1016/j.msea.2023.144995

    Article  CAS  Google Scholar 

  30. Zhou X, Shen Y (2013) Beneficial effects of CeO2 addition on microstructure and corrosion behavior of electrodeposited Ni nanocrystalline coatings. Surf Coat Tech 235:433–446. https://doi.org/10.1016/j.surfcoat.2013.07.070

    Article  CAS  Google Scholar 

  31. Gültekin D, Duru E, Akbulut H (2021) Improved wear behaviors of lead-free electroless NiB and Ni-B/CeO2 composite coatings. Surf Coat Tech 422:1–15. https://doi.org/10.1016/j.surfcoat.2021.127525

    Article  CAS  Google Scholar 

  32. Vazirisereshk MR, Martini A, Strubbe DA, Baykara MZ (2019) Solid lubrication with MoS2: a review. Lubricants 7(7):1–35. https://doi.org/10.3390/lubricants7070057

    Article  Google Scholar 

  33. Vaishnav V, Kumar RP, Venkatesh C (2022) Influence of nano MoS2 particle on the mechanical and tribological properties of Al-TiB2-Gr hybrid composite. J Mech Sci Technol 36:857–867. https://doi.org/10.1007/s12206-022-0133-7

    Article  Google Scholar 

  34. Xiang T, Zhang M, Li C (2018) CeO2 modified SiO2 acted as additive in electrodeposition of Zn-Ni alloy coating with enhanced corrosion resistance. J Alloy Compd 736:62–70. https://doi.org/10.1016/j.jallcom.2017.11.031

    Article  CAS  Google Scholar 

  35. Lee SS, Zhu H, Contreras EQ (2012) High temperature decomposition of cerium precursors to form ceria nanocrystal libraries for biological applications. Chem Mater 24(3):424–432. https://doi.org/10.1021/cm200863q

    Article  CAS  Google Scholar 

  36. An-hua R, Xiu-qing F, Xin-xin C, Jin-ran L, Hong-bing C (2021) Effect of current density on the properties of Ni–CeO2 composite coatings prepared using magnetic field-assisted jet electrodeposition. Int J Electrochem Sci 16:1–22. https://doi.org/10.20964/2021.06.13

  37. Sun X, Pu Y, Wu F, He J, Deng G, Song Z, Liu X, Shui J, Yu R (2021) 0D-1D-2D multidimensionally assembled Co9S8/CNTs/MoS2 composites for ultralight and broadband electromagnetic wave absorption. Chem Eng J 423:1–9. https://doi.org/10.1016/j.cej.2021.130132

  38. Li D, Cui X, Wen X (2022) Effect of CeO2 nanoparticles modified graphene oxide on electroless Ni-P coating for Mg-Li alloy. Appl Surf Sci 593:1–14. https://doi.org/10.1016/j.apsusc.2022.153381

    Article  CAS  Google Scholar 

  39. Fontánez K, García D, Ortiz D (2022) Biomimetic catalysts based on Au@ TiO2-MoS2-CeO2 composites for the production of hydrogen by water splitting. Int J Mol Sci 24(1):1–16. https://doi.org/10.3390/ijms24010363

    Article  CAS  Google Scholar 

  40. Guglielmi N (1972) Kinetics of the deposition of inert particles from electrolytic baths. J Electrochem Soc 119:1009–1012. https://doi.org/10.1149/1.2404383

    Article  CAS  Google Scholar 

  41. Yang M, Huang D, Hao P, Zhang F, Hou X, Wang X (1994) Study of the Raman peak shift and the linewidth of light-emitting porous silicon. J Appl Phys 75:651–653. https://doi.org/10.1063/1.355808

    Article  CAS  Google Scholar 

  42. Sridhar TM, Kamachi Mudali U, Subbaiyan M (2003) Preparation and characterisation of electrophoretically deposited hydroxyapatite coatings on type 316L stainless steel. Corros Sci 45:237–252. https://doi.org/10.1016/S0010-938X(02)00091-4

    Article  Google Scholar 

  43. Zhang J, Gu C, Tu J (2017) Robust slippery coating with superior corrosion resistance and anti-icing performance for AZ31B Mg alloy protection. ACS Appl Mater Interfaces 9:11247–11257. https://doi.org/10.1021/acsami.7b00972

    Article  CAS  PubMed  Google Scholar 

  44. Yang S, Qiu R, Song H, Wang P, Shi Z, Wang Y (2015) Slippery liquid-infused porous surface based on perfluorinated lubricant/iron tetradecanoate: preparation and corrosion protection application. Appl Surf Sci 328:491–500. https://doi.org/10.1016/j.apsusc.2014.12.067

    Article  CAS  Google Scholar 

  45. Brady RF, Singer IL (2000) Mechanical factors favoring release from fouling release coatings. Biofouling 15:73–81. https://doi.org/10.1080/08927010009386299

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Science and Technology Plan Projects of Guangzhou (202201010495) and Training Programs of Innovation and Entrepreneurship for Undergraduates Projects of Guangdong University of Technology (xj2023118450628, xj2023118450662).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cansen Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Tai, X., Xu, J. et al. Bioinspired slippery antifouling Co-CeO2/MoS2 coatings with excellent mechanical robustness and corrosion resistance. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05812-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05812-x

Keywords

Navigation