Skip to main content
Log in

Development of an ultrasensitive rGO/AuNPs/ssDNA-based electrochemical aptasensor for detection of Pb2+

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The present work is performed on Pb2+ detection via electrochemical sensor. The novel aptasensor was developed by modification of glassy carbon electrode (GCE) with reduced graphene oxide (rGO) and gold nanoparticles (AuNPs) modified with ssDNA. The synthesized nanoparticles were characterized by HRTEM (high resolution transmission electron microscopy), SAED (selected area electron diffraction), UV–Vis spectrophotometer, FTIR, and XPS. The rGO was prepared by electrochemical reduction and thickness of rGO sheet was 0.5 to 1 nm. The average AuNPs size was 20–25 nm. The Pb2+ ion binds with specific ssDNA, and it will induce conformational changes of the aptamer and corresponding modulation of electrochemical signals. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for Pb2+ detection and optimization of sensor. The proposed aptasensor exhibits high sensitivity toward detection of Pb2+ ions with a detection limit of 1.52 nM and linear range of 5–50 nM at a signal-to-noise ratio of 3. Moreover, this aptasensor produces satisfactory results in environmental water samples analysis. The results of the newly developed aptasensor show better sensitivity and selectivity than the previously described electrochemical sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zheng J, Wai JL, Lake RJ et al (2021) DNAzyme sensor uses chemiluminescence resonance energy transfer for rapid, portable, and ratiometric detection of metal ions. Anal Chem 93:10834–10840. https://doi.org/10.1021/acs.analchem.1c01077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cruz-Lopes LP, Macena M, Esteves B, Guiné RPF (2021) Ideal pH for the adsorption of metal ions Cr 6+, Ni 2+, Pb2+ in aqueous solution with different adsorbent materials. Open Agric 6:115–123. https://doi.org/10.1515/opag-2021-0225

    Article  Google Scholar 

  3. Henriques B, Rocha LS, Lopes CB et al (2015) Study on bioaccumulation and biosorption of mercury by living marine macroalgae: prospecting for a new remediation biotechnology applied to saline waters. Chem Eng J 281:759–770. https://doi.org/10.1016/j.cej.2015.07.013

    Article  CAS  Google Scholar 

  4. Rocha A, Trujillo K (2019) Neurotoxicity of low-level lead exposure: history, mechanisms of action, and behavioral effects in humans and preclinical models. Neurotoxicology 73:58–80. https://doi.org/10.1016/j.neuro.2019.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jazayeri MH, Aghaie T, Avan A et al (2018) Colorimetric detection based on gold nano particles (GNPs): An easy, fast, inexpensive, low-cost and short time method in detection of analytes (protein, DNA, and ion). Sens Bio-Sens Res 20:1–8. https://doi.org/10.1016/j.sbsr.2018.05.002

    Article  Google Scholar 

  6. Niu X, Liu Y, Wang F, Luo D (2019) Highly sensitive and selective optical sensor for lead ion detection based on liquid crystal decorated with DNAzyme. Opt Express 27:30421. https://doi.org/10.1364/OE.27.030421

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Z, Ma P, Li J et al (2019) Colorimetric and SERS dual-mode detection of lead Ions based on Au-Ag core-shell nanospheres: featuring quick screening with ultra-high sensitivity. Opt Express 27:29248. https://doi.org/10.1364/OE.27.029248

    Article  CAS  PubMed  Google Scholar 

  8. Beltrán B, Leal LO, Ferrer L, Cerdà V (2015) Determination of lead by atomic fluorescence spectrometry using an automated extraction/pre-concentration flow system. J Anal At Spectrom 30:1072–1079. https://doi.org/10.1039/C4JA00456F

    Article  CAS  Google Scholar 

  9. Wu Y-S, Huang F-F, Lin Y-W (2013) Fluorescent detection of lead in environmental water and urine samples using enzyme mimics of catechin-synthesized Au nanoparticles. ACS Appl Mater Interfaces 5:1503–1509. https://doi.org/10.1021/am3030454

    Article  CAS  PubMed  Google Scholar 

  10. Du X, Liu Y, Wang F et al (2021) A fluorescence sensor for Pb2+ detection based on liquid crystals and aggregation-induced emission luminogens. ACS Appl Mater Interfaces 13:22361–22367. https://doi.org/10.1021/acsami.1c02585

    Article  CAS  PubMed  Google Scholar 

  11. Kushwah M, Yadav R, Gaur MS, Berlina AN (2021) Copper nanoparticles-catalysed reduction of methylene blue and high-sensitive chemiluminescence detection of mercury. Int J Environ Anal Chem 1–17. https://doi.org/10.1080/03067319.2021.1893706

    Article  CAS  Google Scholar 

  12. Huang L, Yang L, Zhu C et al (2018) Methylene blue sensitized photoelectrochemical biosensor with 3,4,9,10-perylene tetracarboxylic film as photoelectric material for highly sensitive Pb2+ detection. Sens Actuators B Chem 274:458–463. https://doi.org/10.1016/j.snb.2018.07.135

    Article  CAS  Google Scholar 

  13. Sandford C, Edwards MA, Klunder KJ et al (2019) A synthetic chemist’s guide to electroanalytical tools for studying reaction mechanisms. Chem Sci 10:6404–6422. https://doi.org/10.1039/C9SC01545K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang D, Liu X, Zhou Y et al (2017) Aptamer-based biosensors for detection of lead( ii ) ion: a review. Anal Methods 9:1976–1990. https://doi.org/10.1039/C7AY00477J

    Article  CAS  Google Scholar 

  15. Si Y, Liu J, Chen Y et al (2018) rGO/AuNPs/tetraphenyl porphyrinnano conjugate-based electrochemical sensor for highly sensitive detection of cadmium ions. Anal Methods 10:3631–3636. https://doi.org/10.1039/C8AY01020J

    Article  CAS  Google Scholar 

  16. Jiang P, Wang Y, Zhao L et al (2018) Applications of gold nanoparticles in non-optical biosensors. Nanomaterials 8:977. https://doi.org/10.3390/nano8120977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kushwah M, Gaur MS, Arora K, Berlina AN (2019) Bio synthesis of colloidal AuNPs using thermally assisted pulse sonication method. Mater Res Express 6:115068. https://doi.org/10.1088/2053-1591/ab4a69

    Article  CAS  Google Scholar 

  18. Peña-Bahamonde J, Nguyen HN, Fanourakis SK, Rodrigues DF (2018) Recent advances in graphene-based biosensor technology with applications in life sciences. J Nanobiotechnology 16:75. https://doi.org/10.1186/s12951-018-0400-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Parnianchi F, Nazari M, Maleki J, Mohebi M (2018) Combination of graphene and graphene oxide with metal and metal oxide nanoparticles in fabrication of electrochemical enzymatic biosensors. Int Nano Lett 8:229–239. https://doi.org/10.1007/s40089-018-0253-3

    Article  CAS  Google Scholar 

  20. Pumera M (2011) Graphene in biosensing. Mater Today 14:308–315. https://doi.org/10.1016/S1369-7021(11)70160-2

    Article  CAS  Google Scholar 

  21. Wei Q, Zhao Y, Du B et al (2012) Ultrasensitive detection of kanamycin in animal derived foods by label-free electrochemical immunosensor. Food Chem 134:1601–1606. https://doi.org/10.1016/j.foodchem.2012.02.126

    Article  CAS  PubMed  Google Scholar 

  22. Kanchana P, Radhakrishnan S, Navaneethan M et al (2016) Electrochemical sensor based on fe doped hydroxyapatite-carbon nanotubes composite for L-dopa detection in the presence of uric acid. Nanosci Nanotechnol Lett 16:6185–6192. https://doi.org/10.1166/jnn.2016.11645

    Article  CAS  Google Scholar 

  23. Ma Y, Yu Y, Xu M et al (2016) Facile synthesis of Ag nanoparticles functionalized carbon nanospheres and application in direct electrochemistry of hemoglobin. Nanosci Nanotechnol Lett 8:592–598. https://doi.org/10.1166/nnl.2016.2037

    Article  Google Scholar 

  24. Kushwah M, Gaur MS, Berlina AN, Arora K (2019) Biosynthesis of novel Ag@Cu alloy NPs for enhancement of methylene blue photocatalytic activity and antibacterial activity. Mater Res Express 6:116561. https://doi.org/10.1088/2053-1591/ab485e

    Article  CAS  Google Scholar 

  25. Wu L, Fu X, Liu H et al (2014) Comparative study of graphene nanosheet- and multiwall carbon nanotube-based electrochemical sensor for the sensitive detection of cadmium. Anal Chim Acta 851:43–48. https://doi.org/10.1016/j.aca.2014.08.021

    Article  CAS  PubMed  Google Scholar 

  26. Ruttkay-Nedecky B, Kudr J, Nejdl L et al (2013) G-quadruplexes as sensing probes. Molecules 18:14760–14779. https://doi.org/10.3390/molecules181214760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang D (2019) G-Quadruplex DNA and RNA. In Yang D, Lin C (eds) G-quadruplex nucleic acids: methods and protocols. Methods Mol Bio (Springer, Book Series) 2035:1–24. https://doi.org/10.1007/978-1-4939-9666-7_1

  28. He B, Shen X, Nie J et al (2018) Electrochemical sensor using graphene/Fe3O4 nanosheets functionalized with garlic extract for the detection of lead ion. J Solid State Electrochem. https://doi.org/10.1007/s10008-018-4041-9

    Article  Google Scholar 

  29. Liu X, Zhong J, Rao H et al (2017) Electrochemical dipyridamole sensor based on molecularly imprinted polymer on electrode modified with Fe3O4@Au/amine-multi-walled carbon nanotubes. J Solid State Electrochem 21:3071–3082. https://doi.org/10.1007/s10008-017-3650-z

    Article  CAS  Google Scholar 

  30. Liu F, Nie J, Qin Y et al (2017) A biomimetic sensor based on specific receptor ETBD and Fe3O4@Au/MoS2/GN for signal enhancement shows highly selective electrochemical response to ultra-trace lead (II). J Solid State Electrochem 21:1–12. https://doi.org/10.1007/s10008-017-3659-3

    Article  CAS  Google Scholar 

  31. Cheng Y, Fa H, Yin W et al (2016) A sensitive electrochemical sensor for lead based on gold nanoparticles/nitrogen-doped graphene composites functionalized with l-cysteine-modified electrode. J Solid State Electrochem 20:327–335. https://doi.org/10.1007/s10008-015-3043-0

    Article  CAS  Google Scholar 

  32. Yadav R, Kushwah V, Gaur MS et al (2020) Electrochemical aptamer biosensor for As3+ based on apta deep trapped Ag-Au alloy nanoparticles-impregnated glassy carbon electrode. Int J Environ Anal Chem 100:623–634. https://doi.org/10.1080/03067319.2019.1638371

    Article  CAS  Google Scholar 

  33. Marinoiu A, Raceanu M, Andrulevicius M et al (2020) Low-cost preparation method of well dispersed gold nanoparticles on reduced graphene oxide and electrocatalytic stability in PEM fuel cell. Arab J Chem 13:3585–3600. https://doi.org/10.1016/j.arabjc.2018.12.009

    Article  CAS  Google Scholar 

  34. Wang Y, Hu S (2016) Applications of carbon nanotubes and graphene for electrochemical sensing of environmental pollutants. J Nanosci Nanotechnol 16:7852–7872. https://doi.org/10.1166/jnn.2016.12762

    Article  CAS  Google Scholar 

  35. Singh S, Tuteja SK, Sillu D et al (2016) Gold nanoparticles-reduced graphene oxide based electrochemical immunosensor for the cardiac biomarker myoglobin. Microchim Acta 183:1729–1738. https://doi.org/10.1007/s00604-016-1803-x

    Article  CAS  Google Scholar 

  36. Xu F, Pellino A, Knoll W (2008) Electrostatic repulsion and steric hindrance effects of surface probe density on deoxyribonucleic acid (DNA)/peptide nucleic acid (PNA) hybridization. Thin Solid Films 516:8634–8639. https://doi.org/10.1016/j.tsf.2008.06.067

    Article  CAS  Google Scholar 

  37. Li MJ, Liu CM, Cao HB, Zhang Y (2013) Surface charge research of graphene oxide, chemically reduced graphene oxide and thermally exfoliated graphene oxide. Adv Mat Res 716:127–131. https://doi.org/10.4028/www.scientific.net/AMR.716.127

    Article  CAS  Google Scholar 

  38. Aswathy B, Avadhani GS, Suji S, Sony G (2012) Synthesis of β-cyclodextrin functionalized gold nanoparticles for the selective detection of Pb2+ ions from aqueous solution. Front Mater Sci 6:168–175. https://doi.org/10.1007/s11706-012-0165-5

    Article  Google Scholar 

  39. Watson SMD, Mohamed HDA, Horrocks BR, Houlton A (2013) Electrically conductive magnetic nanowires using an electrochemical DNA-templating route. Nanoscale 5:5349–5359. https://doi.org/10.1039/C3NR00716B

    Article  CAS  PubMed  Google Scholar 

  40. Rolim T, Cancino J, Zucolotto V (2015) A nanostructured genosensor for the early diagnosis of systemic arterial hypertension. Biomed Microdevices 17:3. https://doi.org/10.1007/s10544-014-9911-z

    Article  CAS  PubMed  Google Scholar 

  41. Chand P, Pakade YB (2013) Removal of Pb from water by adsorption on apple pomace: equilibrium, kinetics, and thermodynamics studies. J Chem 2013:e164575. https://doi.org/10.1155/2013/164575

    Article  CAS  Google Scholar 

  42. Murgunde BK, Rabinal MK, Kalasad MN (2018) Biologically active nanocomposite of DNA-PbS nanoparticles: a new material for non-volatile memory devices. Appl Surf Sci 427:344–353. https://doi.org/10.1016/j.apsusc.2017.08.001

    Article  CAS  Google Scholar 

  43. Li Y-K, Li W, Liu X et al (2019) Functionalized magnetic composites based on the aptamer serve as novel bio-adsorbent for the separation and preconcentration of trace lead. Talanta 203:210–219. https://doi.org/10.1016/j.talanta.2019.05.075

    Article  CAS  PubMed  Google Scholar 

  44. Song S, Wang L, Li J et al (2008) Aptamer-based biosensors. TrAC Trends Anal Chem 27:108–117. https://doi.org/10.1016/j.trac.2007.12.004

    Article  CAS  Google Scholar 

  45. Bertana V, Scordo G, Parmeggiani M et al (2020) Rapid prototyping of 3D organic electrochemical transistors by composite photocurable resin. Sci Rep 10:13335. https://doi.org/10.1038/s41598-020-70365-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pu Y, Wu Y, Yu Z et al (2021) Simultaneous determination of Cd2+ and Pb2+ by an electrochemical sensor based on Fe3O4/Bi2O3/C3N4 nanocomposites. Talanta Open 3:100024. https://doi.org/10.1016/j.talo.2020.100024

    Article  Google Scholar 

  47. Fonseca Guerra C, Bickelhaupt FM, Snijders JG, Baerends EJ (2000) Hydrogen bonding in DNA base pairs: reconciliation of theory and experiment. J Am Chem Soc 122:4117–4128. https://doi.org/10.1021/ja993262d

    Article  CAS  Google Scholar 

  48. Schweitzer BA, Kool ET (1995) Hydrophobic, non-hydrogen-bonding bases and base pairs in DNA. J Am Chem Soc 117:1863–1872. https://doi.org/10.1021/ja00112a001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bhattacharyya D, Mirihana Arachchilage G, Basu S (2016) Metal cations in G-quadruplex folding and stability. Front Chem 4:38. https://doi.org/10.3389/fchem.2016.00038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li X, Zheng K, Zhang J et al (2015) Guanine-vacancy–bearing G-quadruplexes responsive to guanine derivatives. Proc Natl Acad Sci USA 112:14581–14586. https://doi.org/10.1073/pnas.1516925112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Adam W, Grimison A, Hoffmann R, Zuazaga de Ortiz C (1968) Hydrogen bonding in pyridine. J Am Chem Soc 90:1509–1516. https://doi.org/10.1021/ja01008a019

    Article  CAS  Google Scholar 

  52. Zhou W, Saran R, Liu J (2017) Metal sensing by DNA. Chem Rev 117:8272–8325. https://doi.org/10.1021/acs.chemrev.7b00063

    Article  CAS  PubMed  Google Scholar 

  53. Yantasee W, Lin Y, Hongsirikarn K et al (2007) Electrochemical sensors for the detection of lead and other toxic heavy metals: the next generation of personal exposure biomonitors. Environ Health Perspect 115:1683–1690. https://doi.org/10.1289/ehp.10190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yadav R, Berlina A, Zherdev A et al (2020) Rapid and selective electrochemical detection of Pb ions using aptamer-conjugated alloy nanoparticles. SN Appl Sci. https://doi.org/10.1007/s42452-020-03840-6

    Article  Google Scholar 

  55. Riyanto R (2014) Determination of lead in waste water using cyclic voltammetry by platinum wire electrode. Eksakta: JurnalIlmu-Ilmu MIPA 14(2):22–23. https://doi.org/10.20885/eksakta.vol14.iss2.art3

    Article  Google Scholar 

  56. Hudah N, Rahman B, Tee T, Sirat K (2011) Adsorption enhancement of Pb(II) ion in the presence of nicotinic acid during cyclic voltammetry. Int J Electrochem Sci 6:3118–3128

    Google Scholar 

  57. Magerusan L, Socaci C, Coros M et al (2017) Electrochemical platform based on nitrogen-doped graphene/chitosan nanocomposite for selective Pb2+ detection. Nanotechnology 28:114001. https://doi.org/10.1088/1361-6528/aa56cb

    Article  CAS  PubMed  Google Scholar 

  58. Xiao Y, Rowe AA, Plaxco KW (2007) Electrochemical detection of parts-per-billion lead via an electrode-bound DNAzyme assembly. J Am ChemSoc 129:262–263. https://doi.org/10.1021/ja067278x

    Article  CAS  Google Scholar 

  59. Sajjan VA, Aralekallu S, Nemakal M et al (2020) Nanomolar detection of lead using electrochemical methods based on a novel phthalocyanine. Inorganica Chim Acta 506:119564. https://doi.org/10.1016/j.ica.2020.119564

    Article  CAS  Google Scholar 

  60. Sarmiento V, Lockett M, Sumbarda-Ramos EG, Vázquez-Mena O (2021) High performance Pb+2 detection using CVD-produced high quality multilayer reduced graphene oxide. NanoEx 2:010023. https://doi.org/10.1088/2632-959X/abe057

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the Indo-Russia Joint Research Programme. The comparative assessment of different analytical formats was implemented under the support of the Ministry of Science and Higher Education of the Russian Federation.

Funding

This study is financially supported by the Department of Science and Technology, New Delhi, India (Letter no. #DST/INT/RUS/RSF/P-28/G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Gaur.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwah, M., Yadav, R., Berlina, A.N. et al. Development of an ultrasensitive rGO/AuNPs/ssDNA-based electrochemical aptasensor for detection of Pb2+. J Solid State Electrochem 27, 559–574 (2023). https://doi.org/10.1007/s10008-022-05344-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05344-2

Keywords

Navigation