Skip to main content
Log in

A nanostructured genosensor for the early diagnosis of systemic arterial hypertension

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The rapid progress of nanomedicine, especially in areas related to medical imaging and diagnostics, has motivated the development of new nanomaterials that can be combined with biological materials for specific medical applications. One such area of research involves the detection of specific DNA sequences for the early diagnosis of genetic diseases, using nanoparticles-containing genosensors. Typical genosensors devices are based on the use of sensing electrodes – biorecognition platforms - containing immobilized capture DNA probes capable of hybridizing with specific target DNA sequences. In this paper we show that upon an appropriate design of the biorecognition platform, efficient sandwich-type genosensors based upon DNA-AuNPs nanocomplexes can be efficiently applied to the detection of a Systemic Arterial Hypertension (SAH) polymorphism located in intron 16 of the Angiotensin-converter enzyme (ACE) gene. Since SAH is intimately related to heart diseases, especially blood hypertension, its early detection is of great biomedical interest. The biorecognition platforms were assembled using mixed self-assembled monolayers (SAMmix), which provided the immobilization of organized architectures with molecular control. Detection of the DNA target sequence at concentrations down to 1 nM was carried out using electrochemical impedance spectroscopy (EIS). We show that the use of EIS combined with specific nanobiocomplexes represents an efficient method for the unambiguous detection of complementary DNA hybridization for preventative nanomedicine applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • A.C. Boing, A.F. Boing, Hipertensão arterial sistêmica: o que nos dizem os sistemas brasileiros de cadastramentos e informações em saúde. Rev. Bras. Hipertensão 14(2), 84–88 (2007)

    Google Scholar 

  • A. Bonanni, M. del Valle, Use of nanomaterials for impedimetric DNA sensors: a review. Anal. Chim. Acta. 678(1), 7–17 (2010)

    Article  Google Scholar 

  • A. Bonanni, M. Isabel Pividori et al., Impedimetric detection of double-tagged PCR products using novel amplification procedures based on gold nanoparticles and Protein G. Analyst 134(3), 602–608 (2009)

    Article  Google Scholar 

  • S. Campuzano, F. Kuralay et al., Ternary monolayers as DNA recognition interfaces for direct and sensitive electrochemical detection in untreated clinical samples. Biosens. Bioelectron. 26(8), 3577–3583 (2011)

    Article  Google Scholar 

  • J. Cancino, S.A.S. Machado, Microelectrodes array in mixed alkanethiol self-assembled monolayers: Electrochemical studies. Electrochim. Acta 72, 108–113 (2012)

    Article  Google Scholar 

  • B.-Y. Chang, S.-M. Park, Electrochemical impedance spectroscopy. Annu. Rev. Anal. Chem. 3, 207–229 (2010). E. S. Yeung and R. N. Zare

    Article  Google Scholar 

  • P. Chen, D. Pan et al., Gold nanoparticles for high-throughput genotyping of long-range haplotypes. Nat. Nanotechnol. 6(10), 639–644 (2011)

    Article  Google Scholar 

  • C. Chittimalla, L. Zammut-Italiano et al., Monomolecular DNA nanoparticles for intravenous delivery of genes. J. Am. Chem. Soc. 127(32), 11436–11441 (2005)

    Article  Google Scholar 

  • L. Civit, A. Fragoso et al., Electrochemical genosensor array for the simultaneous detection of multiple high-risk human papillomavirus sequences in clinical samples. Anal. Chim. Acta. 715, 93–98 (2012)

    Article  Google Scholar 

  • N.B. Colthup, L.H. Daly et al., Introduction to infrared and Raman spectroscopy (Academic Press Limited, USA, 1990)

    Google Scholar 

  • M.E. Davis, J.E. Zuckerman et al., Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291), 1067–U1140 (2010)

    Article  Google Scholar 

  • T.L. Doane, C.-H. Chuang et al., Nanoparticle zeta-Potentials. Acc. Chem. Res. 45(3), 317–326 (2012)

    Article  Google Scholar 

  • L. Dykman, N. Khlebtsov, Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev. 41(6), 2256–2282 (2012)

    Article  Google Scholar 

  • A. Elsaesser, C.V. Howard, Toxicology of nanoparticles. Adv. Drug Deliv. Rev. 64(2), 129–137 (2012)

    Article  Google Scholar 

  • O.C. Estalilla, L.J. Medeiros et al., 5′->3′ exonuclease-based real-time PCR assays for detecting the t(14;18)(q32;21): A survey of 162 malignant lymphomas and reactive specimens. Mod. Pathol. 13(6), 661–666 (2000)

    Article  Google Scholar 

  • Y. Gao, Z. Tang, Design and application of inorganic nanoparticle superstructures: current status and future challenges. Small 7(15), 2133–2146 (2011)

    Article  Google Scholar 

  • H.M. Garnica-Garza, Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors. Phys. Med. Biol. 54(18), 5411 (2009)

    Article  Google Scholar 

  • M. Gebala, W. Schuhmann, Controlled orientation of DNA in a binary SAM as a key for the successful determination of DNA hybridization by means of electrochemical impedance spectroscopy. ChemPhysChem 11(13), 2887–2895 (2010)

    Article  Google Scholar 

  • M. Gebala, L. Stoica et al., Label-free detection of DNA hybridization in presence of intercalators using electrochemical impedance spectroscopy. Electroanalysis 21(3–5), 325–331 (2009)

    Article  Google Scholar 

  • F. Geng, K. Song et al., Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology 22(28), 285101 (2011)

    Article  Google Scholar 

  • J.D. Heidel, M.E. Davis, Clinical developments in nanotechnology for cancer therapy. Pharm. Res. 28(2), 187–199 (2011)

    Article  Google Scholar 

  • A. Hellebust, R. Richards-Kortum, Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics. Nanomedicine 7(3), 429–445 (2012)

    Article  Google Scholar 

  • J.R. Kanwar, X. Sun et al., Nanoparticles in the treatment and diagnosis of neurological disorders: untamed dragon with fire power to heal. Nanomed. Nanotechnol. Biol. Med. 8(4), 399–414 (2012)

    Article  Google Scholar 

  • V. Katsi, M. Marketou et al., Impact of arterial hypertension on the eye. Curr. Hypertens. Rep. 14(6), 581–590 (2012)

    Article  Google Scholar 

  • L.C. Kennedy, L.R. Bickford et al., A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2), 169–183 (2011)

    Article  Google Scholar 

  • K. Kerman, M. Kobayashi et al., Recent trends in electrochemical DNA biosensor technology. Meas. Sci. Technol. 15(2), R1–R11 (2004)

    Article  Google Scholar 

  • S. Laurent, D. Forge et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108(6), 2064–2110 (2008)

    Article  Google Scholar 

  • K.B. Lee, S.J. Park et al., Protein nanoarrays generated by dip-pen nanolithography. Science 295(5560), 1702–1705 (2002)

    Article  Google Scholar 

  • F. Lisdat, D. Schaefer, The use of electrochemical impedance spectroscopy for biosensing. Anal. Bioanal. Chem. 391(5), 1555–1567 (2008)

    Article  Google Scholar 

  • X. Liu, M. Atwater et al., Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B Biointerfaces 58(1), 3–7 (2007)

    Article  Google Scholar 

  • M.M. Mady, W.A. Mohammed et al., Interaction of DNA and polyethylenimine: fourier-transform infrared (FTIR) and differential scanning calorimetry (DSC) studies. Int. J. Phys. Sci. 6(32), 7328–7334 (2011)

    Google Scholar 

  • R.K. Mendes, R.F. Carvalhal et al., Effects of different self-assembled monolayers on enzyme immobilization procedures in peroxidase-based biosensor development. J. Electroanal. Chem. 612(2), 164–172 (2008)

    Article  Google Scholar 

  • O. Mukhtar, S.H.D. Jackson, Risk: benefit of treating high blood pressure in older adults. Br. J. Clin. Pharmacol. 75(1), 36–44 (2013)

    Article  Google Scholar 

  • A.E. Nel, L. Maedler et al., Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8(7), 543–557 (2009)

    Article  Google Scholar 

  • M. Nohaile, B. Dechairo, Molecular diagnostics. Nat. Rev. Drug Discov. 8, 337 (2009)

    Article  Google Scholar 

  • C.J. Orendorff, T.K. Sau et al., Shape-dependent plasmon-resonant gold nanoparticles. Small 2(5), 636–639 (2006)

    Article  Google Scholar 

  • B. Panchapakesan, B. Book-Newell et al., Gold nanoprobes for theranostics. Nanomedicine 6(10), 1787–1811 (2011)

    Article  Google Scholar 

  • A. Rich, S.G. Zhang, Z-DNA: the long road to biological function. Nat. Rev. Genet. 4(7), 566–572 (2003)

    Article  Google Scholar 

  • A. Sassolas, B.D. Leca-Bouvier et al., DNA biosensors and microarrays. Chem. Rev. 108(1), 109–139 (2008)

    Article  Google Scholar 

  • K. Sato, K. Hosokawa et al., Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J. Am. Chem. Soc. 125(27), 8102–8103 (2003)

    Article  Google Scholar 

  • K.E. Scarberry, E.B. Dickerson et al., Magnetic nanoparticle-peptide conjugates for in vitro and in vivo targeting and extraction of cancer cells. J. Am. Chem. Soc. 130(31), 10258–10262 (2008)

    Article  Google Scholar 

  • F.-X. Schmid, Biological macromolecules: UV-visible spectrophotometry. Encyclopedia of life sciences. (Macmillan Publishers Ltd, Nature Publishing Group, 2001)

  • D.K. Schwartz, Mechanisms and kinetics of self-assembled monolayer formation. Annu. Rev. Phys. Chem. 52, 107–137 (2001)

    Article  Google Scholar 

  • R. Sinha, G.J. Kim et al., Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol. Cancer Ther. 5(8), 1909–1917 (2006)

    Article  Google Scholar 

  • J. Wang, Nanomaterial-based amplified transduction of biomolecular interactions. Small 1(11), 1036–1043 (2005)

    Article  Google Scholar 

  • S.D. Xiang, E.M. Benson et al., Tracking membrane and secretory immunoglobulin alpha heavy chain mRNA variation during B-cell differentiation by real-time quantitative polymerase chain reaction. Immunol. Cell Biol. 79(5), 472–481 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (Proc. No. 2010/14565-1), CNPq and CAPES. We are grateful to Dr. Francisco Eduardo Gontijo Guimarães for his help in acquiring the confocal images and Ms. Valéria Spolon Marangoni for TEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Cancino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rolim, T., Cancino, J. & Zucolotto, V. A nanostructured genosensor for the early diagnosis of systemic arterial hypertension. Biomed Microdevices 17, 3 (2015). https://doi.org/10.1007/s10544-014-9911-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-014-9911-z

Keywords

Navigation