Skip to main content
Log in

Nonlinear dynamic behaviors of electrochemical corrosion of Ti-48Al-2Cr-2Nb alloy at high applied potentials

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Chronoamperometry (CA), phase space reconstruction, correlation dimension, multifractal detrended fluctuation analysis (MFDFA) combining linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and surface morphology observation were used to systematically analyze the nonlinear dynamics behavior of electrochemical dissolution of Ti-48Al-2Cr-2Nb alloy at high applied potentials. The relationships of applied potential E with nonlinear dynamic characteristic (saturation correlation dimension \(D_2^{\prime}\), Hurst exponent H, the area of the spectrum S) and electrochemical corrosion parameters (capacitance ratio (Ca/Cb)) were analyzed, respectively. The results show that non-uniform corrosion at low potentials (7–13 V) results in rough surfaces; a higher potential (16 V) contributes to obtaining smoother surface. The growth of saturated correlation dimension reveals that the corrosion behavior of Ti-48Al-2Cr-2Nb alloy changes from non-uniform corrosion to uniform corrosion. The number of major variables in the electrochemical system is 6 for 7–13 V and is 7 for 16 V. The inversely proportional relationships of the area of the spectrum S and Hurst exponent H between the applied potential, respectively, testify that high potential is favorable for uniform corrosion of Ti-48Al-2Cr-2Nb alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Burtscher M, Klein T, Lindemann J, Lehmann O, Fellmann H, Güther V, Clemens H, Mayer S (2020) An advanced TiAl alloy for high-performance racing applications. Materials 13(21):4720. https://doi.org/10.3390/ma13214720

    Article  CAS  Google Scholar 

  2. Neelam NS, Banumathy S, Nageswara Rao GVS, Bhattacharjee A (2021) Study of microstructure and mechanical properties of Γ-Ti-46.5Al-2Cr-(3.5 & 5.0) Nb alloys. Mater Today 41:1069–1072. https://doi.org/10.1016/j.matpr.2020.07.131

    Article  CAS  Google Scholar 

  3. Xu Z, Wang Y (2021) Electrochemical machining of complex components of aero-engines: developments, trends, and technological advances. Chinese J Aeronaut 34:28–53. https://doi.org/10.1016/j.cja.2019.09.016

    Article  Google Scholar 

  4. Cakmak E, Nandwana P, Shin D, Yamamoto Y, Gussev MN, Sen I, Seren MH, Watkins TR, Haynes JA (2019) A comprehensive study on the fabrication and characterization of Ti-48Al-2Cr-2Nb preforms manufactured using electron beam melting. Materialia 6. https://doi.org/10.1016/j.mtla.2019.100284

  5. Zhang Y, Lee YJ, Chang S, Chen Y, Bai Y, Zhang J, Wang H (2022) Microstructural modulation of TiAl alloys for controlling ultra-precision machinability. Int J Mach Tool Manu 174 :103851. https://doi.org/10.1016/j.ijmachtools.2022.103851

  6. Feng R, Shao Z, Yang S, Cao H, Li H, Lei C, Zhang J (2022) Material removal behavior of nanoscale shear cutting and extrusion cutting of monocrystalline γ-TiAl alloy. Int J Adv Manuf Technol 119(9):6729–6742. https://doi.org/10.1007/s00170-021-08536-8

    Article  Google Scholar 

  7. Wang Y, Xu Z, Zhang A (2020) Anodic characteristics and electrochemical machining of two typical γ-TiAl alloys and its quantitative dissolution model in NaNO3 solution. Electrochim Acta 331:135429. https://doi.org/10.1016/j.electacta.2019.135429

  8. Wang J, Xu Z, Wang J, Zhu D (2021) Anodic dissolution characteristics of Inconel 718 in C6H5K3O7 and NaNO3 solutions by pulse electrochemical machining. Corros Sci 183: 109335. https://doi.org/10.1016/j.corsci.2021.109335

  9. Clifton D, Mount A, Jardine DJ, Roth R (2001) Electrochemical machining of gamma titanium aluminide intermetallics. J Mater Process Technol 108:338–348. https://doi.org/10.1016/S0924-0136(00)00739-1

    Article  CAS  Google Scholar 

  10. Liu W, Ao S, Li Y, Liu Z, Zhang H, Manladan SM, Luo Z, Wang Z (2017) Effect of anodic behavior on electrochemical machining of Tb6 titanium alloy. Electrochim Acta 233:190–200. https://doi.org/10.1016/j.electacta.2017.03.025

    Article  CAS  Google Scholar 

  11. Malouche MM, Stein N, Lecomte J, Boulanger C, Rancic M (2020) Influence of the electrolyte composition on the electrochemical dissolution behavior of forged Inconel 718. J Appl Electrochem 50(2):197–206. https://doi.org/10.1007/s10800-019-01386-z

    Article  CAS  Google Scholar 

  12. Wang Y, Xu Z, Zhang A (2019) Electrochemical dissolution behavior of Ti-45al-2mn-2nb+0.8 Vol% Tib2 Xd alloy in NaCl and NaNO3 solutions. Corros Sci 157:357–369. https://doi.org/10.1016/j.corsci.2019.06.010

    Article  CAS  Google Scholar 

  13. Wang Y, Xu Z, Zhang A, Xu G, Zhang C (2021) Surface morphology and electrochemical behaviour of Ti-48Al-2Cr-2Nb alloy in low-concentration salt solution. Sci China Technol Sci 64(2):283–296. https://doi.org/10.1007/s11431-019-1558-8

    Article  CAS  Google Scholar 

  14. Wang Y, Xu Z, Zhang A (2019) Comparison of the electrochemical dissolution behavior of extruded and casted Ti-48Al-2Cr-2Nb alloys in NaNO3 solution. J Electrochem Sci 166(12):E347–E357. https://doi.org/10.1149/2.0501912jes

    Article  CAS  Google Scholar 

  15. He B, Wang D, Zhang J, Lei W (2022) Investigation of electrochemical dissolution behavior of near-α Ta15 titanium alloy in NaCl solution with low-frequency pulse current. J Electrochem Soc 169(4): 043515. https://doi.org/10.1149/1945-7111/ac669d

  16. Wang H, Liu J, Gu D, Zhu D (2020) Electrochemical dissolution behavior of Ti-48Al-2Cr-2Nb in NaNO3 and NaCl electrolytes. Int J Electrochem Sci 15(9):9313–9324. https://doi.org/10.20964/2020.09.70

  17. Liao CJ, Liu Q, Ma XZ, Liu JH (2019) Relationship between surface heterogeneity and electrochemical interface behavior of the TiAl alloy electrode. J Phys Chem C 123(1):473–484. https://doi.org/10.1021/acs.jpcc.8b09123

    Article  CAS  Google Scholar 

  18. Liao CJ, Zhang XM, Luo ZJ (2022) Magnetic field effects on electrochemical dissolution behavior and surface quality of electrochemical machining of Ti-48Al-2Cr-2Nb alloy. J Appl Electrochem. https://doi.org/10.1007/s10800-022-01756-0

  19. Weinmann M, Stolpe M, Weber O, Busch R, Natter H (2015) Electrochemical dissolution behaviour of Ti90Al6v4 and Ti60Al40 used for ECM applications. J Solid State Electr 19(2):485–495. https://doi.org/10.1007/s10008-014-2621-x

    Article  CAS  Google Scholar 

  20. Hudson JL, Bassett MR (1991) Oscillatory electrodissolution of metals. Rev Chem Eng 7(2):109–170. https://doi.org/10.1515/revce-1991-070201

    Article  CAS  Google Scholar 

  21. Hudson JL, Tsotsis TT (1994) Electrochemical reaction dynamics: a review. Chem Eng Sci 49(10):1493–1572. https://doi.org/10.1016/0009-2509(94)85063-1

    Article  CAS  Google Scholar 

  22. Baroux B, Mayet H, Gorse D (1996) Chaotic behaviors in pitting corrosion processes 97(7):461–471. https://doi.org/10.13140/2.1.4394.2087

  23. Hudson JL (1993) Chaos in electrochemical systems. In Chaos in Chemistry and Biochemistry. World Scientific. https://doi.org/10.1142/9789814354745_0005

  24. dos Santos CGP, Machado EG, Kiss IZ, Nagao R (2019) Investigation of the oscillatory electrodissolution of the nickel-iron alloy. J Phys Chem C 123(39):24087–24094. https://doi.org/10.1021/acs.jpcc.9b06423

    Article  CAS  Google Scholar 

  25. Spanoudaki D, Kaimi A, Kouzi L, Sazou D (2018) Analysis of the temporal self-organizational phenomena observed during the electrodissolution of Zn in sulfuric acid solutions. Mater Today 5(14, Part 1):27626–27635. https://doi.org/10.1016/j.matpr.2018.09.083

  26. Wang Y, Xu Z, Zhang A (2019) Comparison of the electrochemical dissolution behavior of extruded and casted Ti-48Al-2Cr-2Nb alloys in NaNO3 solution. J Electrochem Soc 166:E347–E357. https://doi.org/10.1149/2.0501912jes

    Article  CAS  Google Scholar 

  27. Kiss IZ, Zhai Y, Hudson JL (2002) Emerging coherence in a population of chemical oscillators. Science 296(5573):1676–1678. https://doi.org/10.1126/science.1070757

    Article  CAS  Google Scholar 

  28. Eschenazi EV, Tsega Y, Ballard N, Glass G (1995) Electrochemical oscillations, surface morphology and corrosion of selected thermal sprayed alloys. MRS Proc 407:365. https://doi.org/10.1557/PROC-407-365

    Article  Google Scholar 

  29. Ge X, Dietz MS, Alexander NA, Kashani MM (2020) Nonlinear Dynamic behaviour of severely corroded reinforced concrete columns: shaking table study. B Earthq Eng 18(4):1417–1443. https://doi.org/10.1007/s10518-019-00749-3

    Article  Google Scholar 

  30. Legat A, Doleček V (1995) Chaotic analysis of electrochemical noise measured on stainless steel. J Electrochem Soc 142(6):1851–1858. https://doi.org/10.1149/1.2044205

    Article  CAS  Google Scholar 

  31. Xia D, Song S, Wang J, Shi J, Bi H, Gao Z (2012) Determination of corrosion types from electrochemical noise by phase space reconstruction theory. Electrochem Commun 15(1):88–92. https://doi.org/10.1016/j.elecom.2011.11.032

    Article  CAS  Google Scholar 

  32. Martemianov S, Thomas A, Adiutantov N, Denisov E, Evdokimov Y, Hissel D (2020) Electrochemical noise analysis of a PEM fuel cell stack under long-time operation: noise signature in the frequency domain. J Solid State Electr 24(11):3059–3071. https://doi.org/10.1007/s10008-020-04759-z

    Article  CAS  Google Scholar 

  33. López J, Contreras J (2013) Performance of multifractal detrended fluctuation analysis on short time series. Phys Rev 87: 022918. https://doi.org/10.1103/PhysRevE.87.022918

  34. Ihlen E (2012) Introduction to multifractal detrended fluctuation analysis in MATLAB. Front Physiol 3:141. https://doi.org/10.3389/fphys.2012.00141

    Article  Google Scholar 

  35. Buteau S, Dahn D, Dahn J (2018) Explicit conversion between different equivalent circuit models for electrochemical impedance analysis of lithium-ion cells. J Electrochem Soc 165:A228–A234. https://doi.org/10.1149/2.0841802jes

    Article  CAS  Google Scholar 

  36. Dragomiretskiy K, Zosso D (2014) Variational mode decomposition. IEEE Trans Signal Process 62(3):531–544. https://doi.org/10.1109/TSP.2013.2288675

    Article  Google Scholar 

  37. Liu Y, Yang G, Li M, Yin H (2016) Variational mode decomposition denoising combined the detrended fluctuation analysis. Signal Process 125(C):349–364. https://doi.org/10.1016/j.sigpro.2016.02.011

  38. Fletcher SBVJ, Kirkpatrick I (2014) A universal equivalent circuit for carbon-based supercapacitors. J Solid State Electr 18(5):1377–1387. https://doi.org/10.1007/s10008-013-2328-4

    Article  CAS  Google Scholar 

  39. Aladjem A (1973) Anodic oxidation of titanium and its alloys. J Mater Sci 8(5):688–704. https://doi.org/10.1007/BF00561225

    Article  CAS  Google Scholar 

  40. Takens F (1981) Detecting strange attractors in turbulence, in: D Rand, L-S Young (Eds.) Dynamical systems and turbulence. Warwick 1980, Springer Berlin Heidelberg, Berlin, Heidelberg

  41. Bakker R, Schouten JC, Coppens MO, Takens F, Bleek C (2000) Chaotic attractor learning and how to deal with nonlinear singularities, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373) 466–470

  42. Aldrich C, Qi BC, Botha PJ (2006) Analysis of electrochemical noise data with phase space methods. Miner Eng 19(14):1402–1409. https://doi.org/10.1016/j.mineng.2006.01.008

    Article  CAS  Google Scholar 

  43. Strozzi F, Zaldivar J (2002). Embedding theory: introduction and applications to time series analysis. https://doi.org/10.1007/978-1-4615-0931-8_2

    Article  Google Scholar 

  44. Grassberger P, Procaccia I (2004) Measuring the strangeness of strange attractors, in: BR Hunt, T-Y Li, JA Kennedy, HE Nusse (Eds.). The theory of chaotic attractors, Springer New York, New York. https://doi.org/10.1007/978-0-387-21830-4_12

  45. Ramírez-Platas M, Morales-Cabrera MA, Rivera VM, Morales-Zarate E, Hernandez-Martinez E (2021) Fractal and multifractal analysis of electrochemical noise to corrosion evaluation in A36 steel and AISI 304 stainless steel exposed to MEA-Co2 aqueous solutions. Chaos Soliton Fract 145 110802. https://doi.org/10.1016/j.chaos.2021.110802

  46. Ashassi-Sorkhabi H, Seifzadeh D, Hosseini MG (2008) EN, EIS and Polarization studies to evaluate the inhibition effect of 3h-phenothiazin-3-one, 7-dimethylamin on mild steel corrosion in 1m HCl solution. Corros Sci 50(12):3363–3370. https://doi.org/10.1016/j.corsci.2008.09.022

    Article  CAS  Google Scholar 

  47. Wang G, Ren X-m, Li L, Wang Z-Z (2007) Multifractal analysis of surface EMG signals for assessing muscle fatigue during static contractions. J Zhejiang Univ-Sc A 8(6):910–915. https://doi.org/10.1631/jzus.2007.A0910

    Article  Google Scholar 

  48. Movahed MS, Jafari GR, Ghasemi F, Rahvar S (2006) Tabar MRR (2006) Multifractal detrended fluctuation analysis of sunspot time series. J Stat Mech-Theory E 02:P02003–P02003. https://doi.org/10.1088/1742-5468/2006/02/p02003

    Article  Google Scholar 

  49. Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 316(1):87–114. https://doi.org/10.1016/S0378-4371(02)01383-3

    Article  Google Scholar 

  50. Muzy JF, Baïle R, Bacry E (2013) Random cascade model in the limit of infinite integral scale as the exponential of a non-stationary 1/f noise. Application to Volatility Fluctuations in Stock Markets. Phys Rev E 87(4):042813. https://doi.org/10.1103/PhysRevE.87.042813

  51. Lana X, Rodríguez-Solà R, Martínez MD, Casas-Castillo MC, Serra C, Kirchner R (2020) Multifractal structure of the monthly rainfall regime in Catalonia (NE Spain): evaluation of the non-linear structural complexity. Chaos 30(7): 073117. https://doi.org/10.1063/5.0010342

  52. Wang J, Ning X, Chen Y (2003) Multifractal analysis of electronic cardiogram taken from healthy and unhealthy adult subjects. Physica A 323:561–568. https://doi.org/10.1016/S0378-4371(03)00045-1

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant numbers 22072040) and the Natural Science Foundation of Hunan Province (grant number 2020JJ4271).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuijiao Liao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Luo, Z. & Liao, C. Nonlinear dynamic behaviors of electrochemical corrosion of Ti-48Al-2Cr-2Nb alloy at high applied potentials. J Solid State Electrochem 27, 417–426 (2023). https://doi.org/10.1007/s10008-022-05337-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05337-1

Keywords

Navigation