Skip to main content
Log in

Electrochemical noise analysis of a PEM fuel cell stack under long-time operation: noise signature in the frequency domain

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical noise (EN) generated by a PEM fuel cell stack (600 W, 8 cells with surface area 220 cm2) has been measured in well-controlled operational conditions following DOE recommendations for 100 h. For the first time, robust and stable statistical noise descriptors of a PEM fuel cell stack have been obtained based on PSD (power spectral density) spectra in the frequency range of 0.1 Hz < f < 103 Hz. The reference noise signature of the stack involves white noise at the low-frequency range (f < 0.1 Hz), two fractional noises (1/fα) with different slopes, and a pronounced peak at the characteristic frequency f = 1.6 Hz. In the intermediate frequency range (0.1 Hz < f < 1 Hz), the slope α1 = 1.49 and in the high-frequency range (f > 10 Hz), the slop α2 = 3.23. Qualitative interpretations of the obtained noise signature have been proposed. The influence of interruption of stack operation on noise signature has been studied. It was shown that, just after a few hours, other peaks are visible in noise signature at f = 0.004 Hz and f = 0.06 Hz. These peaks disappear after about 20 h; this time can be considered as a characteristic time of relaxation of the slowest processes. It can be also noted that during stack relaxation, the slope in the intermediate frequency range increases and the slope at the high-frequency domain remains constant. It seems that fractional noise at high-frequency range reflects charge transfer processes in catalytic layers with smaller time constants. On the other hand, low and intermediate frequency ranges are related to mass transport and water management processes with higher time constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

EN:

electrochemical noise

ENA:

electrochemical noise analysis

PEMFC:

proton exchange membrane fuel cell

MEA:

membrane electrode assembly

PSD:

power spectral density

1:

zone 1 of the campaign measurements

2:

zone 2 of the campaign measurements

2,1:

part 1 of zone 2 of the campaign measurements

2,2:

part 2 of zone 2 of the campaign measurements

2,3:

part 3 of zone 2 of the campaign measurements

85:

current of 85A

α :

power factor of fractional noise (PSD linear slope in logarithmic coordinates)

ƒ :

frequency/Hz

T :

time/sec or hour

References

  1. Dicks AL, Rand DAJ (2018) Fuel Cell Systems Explained, 3rd edn. Wiley, Chichester. https://doi.org/10.1002/9781118706992

    Book  Google Scholar 

  2. Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88(4):981–1007. https://doi.org/10.1016/j.apenergy.2010.09.030

    Article  CAS  Google Scholar 

  3. Li H, Li H, Tang Y, Wang Z, Shi Z, Wu S et al (2008) A review of water flooding issues in the proton exchange membrane fuel cell. J Power Sources 178(1):103–117. https://doi.org/10.1016/j.jpowsour.2007.12.068

    Article  CAS  Google Scholar 

  4. Simons A, Bauer C (2011) Life cycle assessment of hydrogen production. Book Chapter. In: Wokaun A, Wilhelm E (eds) Transition to Hydrogen—Pathways toward Clean Transportation. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9781139018036.006

    Chapter  Google Scholar 

  5. Coutanceau C, Baranton S (2016) Electrochemical conversion of alcohols for hydrogen production: a short overview. WIRE Energy Environ 5(4):388–400. https://doi.org/10.1002/wene.193

    Article  CAS  Google Scholar 

  6. Selembo PA, Perez JM, Lloyd WA, Logan BE (2009) High hydrogen production from glycerol or glucose by electro-hydro genesis using microbial electrolysis cells. Int J Hydrog Energy 34(13):5373–5381. https://doi.org/10.1016/j.ijhydene.2009.05.002

    Article  CAS  Google Scholar 

  7. Bambagioni V, Bevilacqua M, Bianchini C, Filippi J, Lavacchi A, Marchionni A, Vizza F, Shen PK (2010) Self-sustainable production of hydrogen, chemicals, and energy from renewable alcohols by electrocatalysis. ChemSusChem 3(7):851–855. https://doi.org/10.1002/cssc.201000103

    Article  CAS  PubMed  Google Scholar 

  8. Jiménez-Rodríguez A, Serrano A, Benjumea T, Borja R, El Kaoutit M, Fermoso FG (2019) Decreasing microbial fuel cell start-up time using multi-walled carbon nanotubes. Emerg Sci J 3(2):109–114. https://doi.org/10.28991/esj-2019-01174

    Article  Google Scholar 

  9. Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: from fundamentals to applications. A review. J Power Sources 356:225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Parsa N, Khajouei G, Masigol M, Hasheminejad H, Moheb A (2018) Application of electrodialysis process for reduction of electrical conductivity and COD of water contaminated by composting leachate. Civil Eng J 4(5):1034–1045. https://doi.org/10.28991/cej-0309154

    Article  Google Scholar 

  11. Ali A, Ejaz N, Nasreen S, Nasir A, Qureshi LA, Al-Sakkaf BM (2019) Enhanced degradation of dyes present in textile effluent by ultrasound-assisted electrochemical reactor. Civil Eng J 5(10):2131–2142. https://doi.org/10.28991/cej-2019-03091399

    Article  Google Scholar 

  12. Ellamla H, Staffell I, Bujlo P, Pollet BG, Pasupathi S (2015) Current status of fuel cell-based combined heat and power systems for the residential sector. J Power Sources 293:312–328. https://doi.org/10.1016/j.jpowsour.2015.05.050

    Article  CAS  Google Scholar 

  13. Barbir F (2013) PEM fuel cells, 2nd edn. Academic Press Inc, Cambridge. https://doi.org/10.1016/b978-0-12-387710-9.05002-5

    Book  Google Scholar 

  14. Wu J, Yuan XZ, Martin JJ, Wang H, Zhang J, Shen J, Wu S, Merida W (2008) A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J Power Sources 184(1):104–119. https://doi.org/10.1016/j.jpowsour.2008.06.006

    Article  CAS  Google Scholar 

  15. Nigmatullin RR, Martemianov S, Evdokimov YK, Denisov E, Thomas A, Adiutantov N (2016) New approach for PEMFC diagnostics based on quantitative description of quasi-periodic oscillations. Int J Hydrog Energy 41(29):12582–12590. https://doi.org/10.1016/j.ijhydene.2016.06.011

    Article  CAS  Google Scholar 

  16. Khazaee I, Ghazikhani M, Mohammadiun M (2012) Experimental and thermodynamic investigation of a triangular channel geometry PEM fuel cell at different operating conditions. Sci Iranica 19(3):585–593. https://doi.org/10.1016/j.scient.2011.11.039

    Article  CAS  Google Scholar 

  17. Martemianov S, Ilie VR, Coutanceau C (2014) Improvement of the proton exchange membrane fuel cell performances by optimization of the hot pressing process for membrane electrode assembly. J Solid State Electrochem 18(5):1261–1269. https://doi.org/10.1007/s10008-013-2273-2

    Article  CAS  Google Scholar 

  18. Grigoriev SA, Fedotov AA, Martemianov SA, Fateev NA (2014) Synthesis of nanostructural electrocatalytic materials on various carbon substrates by ion plasma sputtering of platinum metals. Russ J Electrochem 50(7):638–646. https://doi.org/10.1134/s1023193514070064

    Article  CAS  Google Scholar 

  19. Thomas A, Maranzana G, Didierjean S, Dillet J, Lottin O (2013) Measurements of electrode temperatures, heat and water fluxes in PEMFCs: conclusions about transfer mechanisms. J Electrochem Soc 160(2):F191–F204. https://doi.org/10.1149/2.006303jes

    Article  CAS  Google Scholar 

  20. Banerjee R, Howe D, Mejia V, Kandlikar SG (2014) Experimental validation of two-phase pressure drop multiplier as a diagnostic tool for characterizing PEM fuel cell performance. Int J Hydrog Energy 39(31):17791–17801. https://doi.org/10.1016/j.ijhydene.2014.08.118

    Article  CAS  Google Scholar 

  21. Dib A, Maizia R, Martemianov S, Thomas A (2019) Statistical short time analysis for proton exchange membrane fuel cell diagnostic-application to water management. Fuel Cells 19(5):539–549. https://doi.org/10.1002/fuce.201900060

    Article  CAS  Google Scholar 

  22. Astafev EA (2020) Comparison of approaches in electrochemical noise analysis using an air-hydrogen fuel cell. Russ J Electrochem 56(2):156–162. https://doi.org/10.1134/s1023193520020032

    Article  CAS  Google Scholar 

  23. Legros B, Thivel PX, Bultel Y, Nogueira RP (2011) First results on PEMFC diagnosis by electrochemical noise. Electrochem Commun 13(12):1514–1516. https://doi.org/10.1016/j.elecom.2011.10.007

    Article  CAS  Google Scholar 

  24. Miramontes JA, Nieves-Mendoza D, Castillo-González E, Almeraya-Calderón F (2014) Electrochemical noise analysis of nickel-based superalloys in acid solutions. Int J Electrochem Sci 9(12):523–928. https://doi.org/10.5006/1.3294407

    Article  Google Scholar 

  25. Vorotyntsev MA, Martem’Yanov SA, Grafov BM (1984) Temporal correlation of current pulsations at one or several electrodes: a technique to study hydrodynamic fluctuation characteristics of a turbulent flow. J Electroanal Chem Interfacial Electrochem 179(1-2):1–23. https://doi.org/10.1016/s0022-0728(84)80270-3

    Article  CAS  Google Scholar 

  26. Adolphe X, Danaila L, Martemianov S (2007) On the small-scale statistics of turbulent mixing in electrochemical systems. J Electroanal Chem 600(1):119–130. https://doi.org/10.1016/j.jelechem.2006.04.023

    Article  CAS  Google Scholar 

  27. Martemianov S, Danaila L (2003) On the study of electrochemical turbulent noise in a stirred vessel. Fluct Noise Lett 3(04):L463–L471. https://doi.org/10.1142/s0219477503001555

    Article  Google Scholar 

  28. Gabrielli C, Huet F, Keddam M (1985) Characterization of electrolytic bubble evolution by spectral analysis. Application to a corroding electrode. J Appl Electrochem 15(4):503–508. https://doi.org/10.1007/bf01059291

    Article  CAS  Google Scholar 

  29. Hodgson DR (1996) Application of electrochemical noise and in situ microscopy to the study of bubble evolution on chlorine evolving anodes. Electrochim Acta 41(4):605–609. https://doi.org/10.1016/0013-4686(95)00347-9

    Article  CAS  Google Scholar 

  30. Mansfeld F, Lee CC (1997) The frequency dependence of the noise resistance for polymer-coated metals. J Electrochem Soc 144(6):2068–2071. https://doi.org/10.1149/1.1837743

    Article  CAS  Google Scholar 

  31. Bertocci U, Frydman J, Gabrielli C, Huet F, Keddam M (1998) Analysis of electrochemical noise by power spectral density applied to corrosion studies maximum entropy method or fast Fourier transform. J Electrochem Soc 145(8):2780–2786. https://doi.org/10.1149/1.1838714

    Article  CAS  Google Scholar 

  32. Gabrielli C, Keddam M (1992) Review of applications of impedance and noise analysis to uniform and localized corrosion. Corrosion 48(10):794–811. https://doi.org/10.5006/1.3315878

    Article  CAS  Google Scholar 

  33. Gabrielli C, Huet F, Keddam M (1986) Investigation of electrochemical processes by an electrochemical noise analysis. Theoretical and experimental aspects in potentiostatic regime. Electrochim Acta 31(8):1025–1039. https://doi.org/10.1016/0013-4686(86)80018-4

    Article  CAS  Google Scholar 

  34. Denisov ES, Evdokimov YK, Martemianov S, Thomas A, Adiutantov N (2016) Electrochemical noise as a diagnostic tool for PEMFC. Fuel Cells 17(2):225–237. https://doi.org/10.1002/fuce.201600077

    Article  CAS  Google Scholar 

  35. Astafev EA, Ukshe AE, Gerasimova EV, Dobrovolsky YA, Manzhos RA (2018) Electrochemical noise of a hydrogen-air polymer electrolyte fuel cell operating at different loads. J Solid State Electrochem 22(6):1839–1849. https://doi.org/10.1007/s10008-018-3892-4

    Article  CAS  Google Scholar 

  36. Huet F, Nogueira RP, Lailler P, Torcheux L (2006) Investigation of the high-frequency resistance of a lead-acid battery. J Power Sources 158(2):1012–1018. https://doi.org/10.1016/j.jpowsour.2005.11.026

    Article  CAS  Google Scholar 

  37. Martemianov S, Adiutantov N, Evdokimov YK, Madier L, Maillard F, Thomas A (2015) New methodology of electrochemical noise analysis and applications for commercial Li-ion batteries. J Solid State Electrochem 19(9):2803–2810. https://doi.org/10.1007/s10008-015-2855-2

    Article  CAS  Google Scholar 

  38. Astafev EA (2020) The measurement of electrochemical noise of a Li-ion battery during charge-discharge cycling. Measurement 154:107492. https://doi.org/10.1016/j.measurement.2020.107492

    Article  Google Scholar 

  39. Greisiger H, Schauer T (2000) On the interpretation of the electrochemical noise data for coatings. Prog Org Coat 39(1):31–36. https://doi.org/10.1016/s0300-9440(00)00096-5

    Article  CAS  Google Scholar 

  40. Xiao H, Mansfeld F (1994) Evaluation of coating degradation with electrochemical impedance spectroscopy and electrochemical noise analysis. J Electrochem Soc 141(9):2332–2337. https://doi.org/10.1149/1.2055121

    Article  CAS  Google Scholar 

  41. Bahrami MJ, Shahidi M, Hosseini SMA (2014) Comparison of electrochemical current noise signals arising from symmetrical and asymmetrical electrodes made of Al alloys at different pH values using statistical and wavelet analysis. Part I: Neutral and acidic solutions. Electrochim Acta 148:127–144. https://doi.org/10.1016/j.electacta.2014.10.031

    Article  CAS  Google Scholar 

  42. Aballe A, Bethencourt M, Botana FJ, Marcos M (1999) Using wavelets transform in the analysis of electrochemical noise data. Electrochim Acta 44(26):4805–4816. https://doi.org/10.1016/s0013-4686(99)00222-4

    Article  CAS  Google Scholar 

  43. Lentka L, Smulko J (2019) Methods of trend removal in electrochemical noise data – overview. Measurement 131:569–581. https://doi.org/10.1016/j.measurement.2018.08.023

    Article  Google Scholar 

  44. Grafov BM, Dobrovolskij YA, Kluev AL, Ukshe AE, Davydov AD, Astaf’ev EA (2017) Median Chebyshev spectroscopy of electrochemical noise. J Solid State Electrochem 21(3):915–918. https://doi.org/10.1007/s10008-016-3395-0

    Article  CAS  Google Scholar 

  45. Martemyanov SA, Petrovskiy NV, Grafov BM (1991) Turbulent pulsations of the microelectrode limiting diffusion current. J Appl Electrochem 21(12):1099–1102. https://doi.org/10.1007/bf01041455

    Article  CAS  Google Scholar 

  46. Martemianov S (2017) Statistical theory of turbulent mass transfer in electrochemical systems. Russ J Electrochem 53(10):1076–1086. https://doi.org/10.1134/s1023193517100081

    Article  CAS  Google Scholar 

  47. Kay SM, Marple SL (1981) Spectrum analysis—a modern perspective. Proc IEEE 68(11):1380–1419. https://doi.org/10.1109/PROC.1981.12184

    Article  Google Scholar 

  48. Maizia R, Dib A, Thomas A, Martemianov S (2017) Proton exchange membrane fuel cell diagnosis by spectral characterization of the electrochemical noise. J Power Sources 342:553–561. https://doi.org/10.1016/j.jpowsour.2016.12.053

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very thankful to Professor Fritz Scholz, founder, and Editor-In-Chief of the Journal of Solid State Electrochemistry, for the interest and support of electrochemical noise diagnostics.

Funding

This work has been supported by the ANR project PROPICE (ANR-12-PRGE-0001) funded by the French National Research Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Martemianov.

Additional information

This paper is dedicated to the 65th birthday of Professor Fritz Scholz.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martemianov, S., Thomas, A., Adiutantov, N. et al. Electrochemical noise analysis of a PEM fuel cell stack under long-time operation: noise signature in the frequency domain. J Solid State Electrochem 24, 3059–3071 (2020). https://doi.org/10.1007/s10008-020-04759-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04759-z

Keywords

Navigation