Skip to main content
Log in

In situ XPS study of template-free electrodeposition of antimony nanowires from an ionic liquid

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Antimony nanowires have been synthesized by template-free electrodeposition at room temperature from the ionic liquid (IL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Py1,4]TFSI) containing 0.5 mol/L SbCl3. The nanowires are shown to have a diameter of ~ 50 nm and a length of ~ 10 µm. Sb nanowires can only be obtained by a two-step electrochemical process, requiring first a cyclic voltammetry step followed by the electrodeposition step. In situ XPS is employed to investigate the speciation formed during the electrochemical reduction process. The results reveal that the XPS core level peaks of the IL and of SbCl3 components shift their binding energies towards higher values accordingly with the applied negative cell voltage. Additional peaks at lower binding energies than those of Sb3+/IL at the OCP can be attributed to the adsorption of reduced Sb species. The formed species together with the IL solvation layers play an important role in the formation of Sb nanowires.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Machín A, Fontánez K, Arango JC, Ortiz D, De León J, Pinilla S, Nicolosi V, Petrescu FI, Morant C, Márquez F (2021) One-dimensional (1D) nanostructured materials for energy applications. Mater 14:2609

    Article  Google Scholar 

  2. Li P, Chen W (2019) Recent advances in one-dimensional nanostructures for energy electrocatalysis. Chin J Catal 40:4–22

    Article  CAS  Google Scholar 

  3. Mai L, Sheng J, Xu L, Tan S, Meng J (2018) One-dimensional hetero-nanostructures for rechargeable batteries. Acc Chem Res 51:950–959

    Article  CAS  Google Scholar 

  4. Hou H, Shao G, Yang W, Wong W-Y (2020) One-dimensional mesoporous inorganic nanostructures and their applications in energy, sensor, catalysis and adsorption. Prog Mater Sci 113:100671

    Article  CAS  Google Scholar 

  5. He M, Kravchyk K, Walter M, Kovalenko MV (2014) Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk. Nano Lett 14:1255–1262

    Article  CAS  Google Scholar 

  6. Liu Y, Zhou B, Liu S, Ma Q, Zhang W-H (2019) Galvanic replacement synthesis of highly uniform Sb Nanotubes: reaction mechanism and enhanced sodium storage performance. ACS Nano 13:5885–5892

    Article  CAS  Google Scholar 

  7. Baggetto L, Ganesh P, Sun C-N, Meisner RA, Zawodzinski TA, Veith GM (2013) Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory. J Mater Chem A 1:7985–7994

    Article  CAS  Google Scholar 

  8. He J, Wei Y, Zhai T, Li H (2018) Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries. Mater Chem Front 2:437–455

    Article  CAS  Google Scholar 

  9. Tonelli D, Scavetta E, Gualandi I (2019) Electrochemical deposition of nanomaterials for electrochemical sensing. Sensors 19:1186

    Article  CAS  Google Scholar 

  10. Gong X, Gu Y, Zhang F, Liu Z, Li Y, Chen G, Wang B (2019) High-performance non-enzymatic glucose sensors based on conicu alloy nanotubes arrays prepared by electrodeposition. Front Mater 6:3

    Article  Google Scholar 

  11. Cao G, Liu D (2008) Template-based synthesis of nanorod, nanowire, and nanotube arrays. Adv Colloid Interface Sci 136:45–64

    Article  CAS  Google Scholar 

  12. Mohanty U (2011) Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals. J Appl Electrochem 41:257–270

    Article  CAS  Google Scholar 

  13. Zhang Y, Li G, Wu Y, Zhang B, Song W, Zhang L (2002) Antimony nanowire arrays fabricated by pulsed electrodeposition in anodic alumina membranes. Adv Mater 14:1227–1230

    Article  CAS  Google Scholar 

  14. Al-Salman R, Sommer H, Brezesinski T, Janek J (2015) Template-free electrochemical synthesis of high aspect ratio Sn nanowires in ionic liquids: a general route to large-area metal and semimetal nanowire arrays? Chem Mater 27:3830–3837

    Article  CAS  Google Scholar 

  15. Thiebaud L, Legeai S, Ghanbaja J, Stein N (2016) Electrodeposition of high aspect ratio single crystalline tellurium nanowires from piperidinium-based ionic liquid. Electrochim Acta 222:528–534

    Article  CAS  Google Scholar 

  16. Wang H, Li B (2018) Direct electrodeposition of aluminum nanowires from a room temperature ionic liquid: an electrochemical 2d–3d-1d process. J Electrochem Soc 165:D641–D646

    Article  CAS  Google Scholar 

  17. Su C-J, Hsieh Y-T, Fong J-D, Chang C-C, Sun IW (2016) Template free synthesis of beaded aluminium sub-microwires via pulse potential electrodeposition. RSC Adv 6:75054–75057

    Article  CAS  Google Scholar 

  18. Chi C, Hao J, Liu X, Ma X, Yang Y, Liu X, Endres F, Zhao J, Li Y (2017) Uv-assisted, template-free electrodeposition of Germanium nanowire cluster arrays from an ionic liquid for anodes in lithium-ion batteries. New J Chem 41:15210–15215

    Article  CAS  Google Scholar 

  19. Al-Salman R, Sedlmaier SJ, Sommer H, Brezesinski T, Janek J (2016) Facile synthesis of micrometer-long antimony nanowires by template-free electrodeposition for next generation Li-ion batteries. J Mater Chem A 4:12726–12729

    Article  CAS  Google Scholar 

  20. Pulletikurthi G, Shapouri Ghazvini M, Prowald A, Zein El Abedin S, Endres F (2015) Template-free electrodeposition of zinc nanowires from an ionic liquid. Chem Electro Chem 2:1366–1371

    Article  CAS  Google Scholar 

  21. Elbasiony AM, Olschewski M, Zein El Abedin S, Endres F (2015) Template-free electrodeposition of SnSi nanowires from an ionic liquid. Chem Electro Chem 2:1361–1365

    Article  CAS  Google Scholar 

  22. Liu Z, Höfft O, Endres F (2021) Disproportionation reaction of gallium during electrodeposition from an ionic liquid, monitored by in situ electrochemical XPS. J Phys Chem C 125:24589–24595

    Article  CAS  Google Scholar 

  23. Liu Z, Höfft O, Gödde AS, Endres F (2021) In situ electrochemical XPS monitoring of the formation of anionic gold species by cathodic corrosion of a gold electrode in an ionic liquid. J Phys Chem C 125:26793–26800

    Article  CAS  Google Scholar 

  24. Lahiri A, Carstens T, Atkin R, Borisenko N, Endres F (2015) In situ atomic force microscopic studies of the interfacial multilayer nanostructure of LiTFSI–[Py1, 4]TFSI on Au(111): influence of Li+ ion concentration on the Au(111)/IL interface. J Phys Chem C 119:16734–16742

    Article  CAS  Google Scholar 

  25. Liu Z, Cui T, Li G, Endres F (2017) Interfacial nanostructure and asymmetric electrowetting of ionic liquids. Langmuir 33:9539–9547

    Article  CAS  Google Scholar 

  26. Fedorov MV, Kornyshev AA (2014) Ionic liquids at electrified interfaces. Chem Rev 114:2978–3036

    Article  CAS  Google Scholar 

  27. Atkin R, Zein El Abedin S, Hayes R, Gasparotto LHS, Borisenko N, Endres F (2009) AFM and STM Studies on the surface interaction of [BMP]TFSA and [EMIm]TFSA ionic liquids with Au(111). J Phys Chem C 113:13266–13272

    Article  CAS  Google Scholar 

  28. Endres F, Borisenko N, Zein El Abedin S, Hayes R, Atkin R (2012) The interface ionic liquid(S)/electrode(S): in situ STM and AFM measurements. Faraday Discuss 154:221–233

    Article  CAS  Google Scholar 

  29. Carstens T, Ispas A, Borisenko N, Atkin R, Bund A, Endres F (2016) In situ scanning tunneling microscopy (STM), atomic force microscopy (AFM) and quartz Crystal Microbalance (EQCM) Studies of the Electrochemical Deposition of tantalum in two different ionic liquids with the 1-butyl-1-methylpyrrolidinium cation. Electrochim Acta 197:374–387

    Article  CAS  Google Scholar 

  30. Borisenko N, Atkin R, Lahiri A, Zein El Abedin S, Endres F (2014) Effect of dissolved LiCl on the ionic liquid–Au(111) Interface: an in situ STM study. J Phys: Condens Matter 26:284111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Liu or Frank Endres.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Cheng, J., Höfft, O. et al. In situ XPS study of template-free electrodeposition of antimony nanowires from an ionic liquid. J Solid State Electrochem 27, 371–378 (2023). https://doi.org/10.1007/s10008-022-05321-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05321-9

Keywords

Navigation