Skip to main content

Advertisement

Log in

Nanostructured TiO2 as anode material for magnesium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The nanotubular structure of titanium dioxide (TiO2) is most suitable for creating high-performance energy storage and conversion devices. This paper reports on the synthesis of an array of nanotubes (NTs) from TiO2 by electrochemical anodization of titanium sheets using electrolytes based on fluorine and glycerol. The results of SEM and X-ray spectral analysis of the obtained material revealed the anatase phase of TiO2 nanotubes with an inner diameter of 96–150 nm and a length of 0.6 ± 0.1 μm. The electrochemical behavior of the resulting electrode was studied in a solution of Mg(TFSI)2 based on ethylene carbonate/dimethyl carbonate (1/1). From the cyclic voltammograms, the diffusion coefficient and rate constant were determined to be 1.51·10−10 cm2·s−1, k = 1.55·10−10 cm·s−1 (reduction), respectively. The value of the Coulomb efficiency at low discharge current is higher (88%) than at high discharge current (56%). At a high discharge current (1C), it is noticeable that the charge capacity in the cathodic process is much higher than in the anodic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang Y, Geng H, Wei W et al (2019) Challenges and recent progress in the design of advanced electrode materials for rechargeable Mg batteries. Energy Stor Mater 20:118–138

    Google Scholar 

  2. Attias R, Salama M, Hirsch B et al (2019) Anode-electrolyte interfaces in secondary magnesium batteries. Joule 3:27–52

    Article  CAS  Google Scholar 

  3. Sheha E, El-Deftar M (2018) Magnesium hexakis(methanol)-dinitrate complex electrolyte for use in rechargeable magnesium batteries. J Solid State Electrochem 22:2671–2679. https://doi.org/10.1007/s10008-018-3986-z

    Article  CAS  Google Scholar 

  4. Guo Q, Zeng W, Liu SL et al (2021) Recent developments on anode materials for magnesium-ion batteries: a review. Rare Met 40:290–308

    Article  CAS  Google Scholar 

  5. Meng Y, Wang D, Zhao Y et al (2017) Ultrathin TiO2-B nanowires as an anode material for Mg-ion batteries based on a surface Mg storage mechanism. Nanoscale 9:12934–12940. https://doi.org/10.1039/c7nr03493h

    Article  CAS  Google Scholar 

  6. Fu Q, Sarapulova A, Trouillet V et al (2019) In operando synchrotron diffraction and in operando X-ray absorption spectroscopy investigations of orthorhombic V2O5 nanowires as cathode materials for Mg-ion batteries. J Am Chem Soc 141:2305–2315. https://doi.org/10.1021/jacs.8b08998

    Article  CAS  Google Scholar 

  7. Wang Y, Liu Z, Wang C et al (2018) Highly branched VS4 nanodendrites with 1D atomic-chain structure as a promising cathode material for long-cycling magnesium batteries. Adv Mater 30:1–10. https://doi.org/10.1002/adma.201802563

    Article  CAS  Google Scholar 

  8. Yoo HD, Liang Y, Dong H et al (2017) Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries. Nat Commun. https://doi.org/10.1038/s41467-017-00431-9

    Article  Google Scholar 

  9. Luo L, Zhou K, Lian R et al (2020) Cation-deficient TiO2(B) nanowires with protons charge compensation for regulating reversible magnesium storage. Nano Energy. https://doi.org/10.1016/j.nanoen.2020.104716

    Article  Google Scholar 

  10. Liu G, Wu HH, Meng Q et al (2020) Role of the anatase/TiO2(B) heterointerface for ultrastable high-rate lithium and sodium energy storage performance. Nanoscale Horizons 5:150–162. https://doi.org/10.1039/c9nh00402e

    Article  CAS  Google Scholar 

  11. Minella M, Versaci D, Casino S et al (2017) Anodic materials for lithium-ion batteries: TiO2-rGO composites for high power applications. Electrochim Acta 230:132–140. https://doi.org/10.1016/j.electacta.2017.01.190

    Article  CAS  Google Scholar 

  12. Ha SY, Lee YW, Woo SW et al (2014) Magnesium(II) bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl Mater Interfaces 6:4063–4073. https://doi.org/10.1021/am405619v

    Article  CAS  Google Scholar 

  13. Jay R, Tomich AW, Zhang J et al (2019) Comparative study of Mg(CB 11 H 12) 2 and Mg(TFSI)2 at the magnesium/electrolyte interface. ACS Appl Mater Interfaces 11:11414–11420. https://doi.org/10.1021/acsami.9b00037

    Article  CAS  Google Scholar 

  14. Shterenberg I, Salama M, Yoo HD et al (2015) Evaluation of (CF3SO2)2N − (TFSI) based electrolyte solutions for Mg batteries. J Electrochem Soc 162:A7118–A7128. https://doi.org/10.1149/2.0161513jes

    Article  CAS  Google Scholar 

  15. Tran TT, Lamanna WM, Obrovac MN (2012) Evaluation of Mg[N(SO2CF3)2]2/acetonitrile electrolyte for use in Mg-ion cells. J Electrochem Soc 159:A2005–A2009. https://doi.org/10.1149/2.012301jes

    Article  CAS  Google Scholar 

  16. Son SB, Gao T, Harvey SP et al (2018) An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nat Chem 10:532–539. https://doi.org/10.1038/s41557-018-0019-6

    Article  CAS  Google Scholar 

  17. Imamura D, Miyayama M, Hibino M, Kudo T (2003) Mg intercalation properties into V[sub 2]O[sub 5] gel/carbon composites under high-rate condition. J Electrochem Soc 150:A753. https://doi.org/10.1149/1.1571531

    Article  CAS  Google Scholar 

  18. Lee SH, DiLeo RA, Marschilok AC et al (2014) Sol gel based synthesis and electrochemistry of magnesium vanadium oxide: a promising cathode material for secondary magnesium ion batteries. ECS Electrochem Lett 3:A87–A90. https://doi.org/10.1149/2.0021408eel

    Article  CAS  Google Scholar 

  19. Muldoon J, Bucur CB, Gregory T (2014) Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev 114:11683–11720. https://doi.org/10.1021/cr500049y

    Article  CAS  Google Scholar 

  20. Massé RC, Uchaker E, Cao G (2015) Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries. Sci China Mater 58:715–766. https://doi.org/10.1007/s40843-015-0084-8

    Article  CAS  Google Scholar 

  21. Wang C, Huang Y, Lu Y et al (2021) Reversible magnesium metal anode enabled by cooperative solvation/surface engineering in carbonate electrolytes. Nano-Micro Lett 13:1–11. https://doi.org/10.1007/s40820-021-00716-1

    Article  CAS  Google Scholar 

  22. Ellis BL, Knauth P, Djenizian T (2014) Three-dimensional self-supported metal oxides for advanced energy storage. Adv Mater 26:3368–3397

    Article  CAS  Google Scholar 

  23. Plylahan N, Letiche M, Samy Barr MK et al (2015) High energy and power density TiO2 nanotube electrodes for single and complete lithium-ion batteries. J Power Sources 273:1182–1188. https://doi.org/10.1016/j.jpowsour.2014.09.152

    Article  CAS  Google Scholar 

  24. Macák JM, Tsuchiya H, Schmuki P (2005) High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chemie - Int Ed 44:2100–2102. https://doi.org/10.1002/anie.200462459

    Article  CAS  Google Scholar 

  25. Patil JV, Mali SS, Shaikh JS et al (2019) Electrochemically anodized ultralong TiO2 nanotubes for supercapacitors. J Electron Mater 48:873–878. https://doi.org/10.1007/s11664-018-6797-1

    Article  CAS  Google Scholar 

  26. Macak JM, Tsuchiya H, Ghicov A et al (2007) TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci 11:3–18

    Article  CAS  Google Scholar 

  27. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chemie - Int Ed 50:2904–2939

    Article  CAS  Google Scholar 

  28. Auer A, Kunze-Liebhäuser J (2019) Recent progress in understanding ion storage in self-organized anodic TiO2 nanotubes. Small Methods. https://doi.org/10.1002/smtd.201800385

    Article  Google Scholar 

  29. Xue J, Wang Z, Hu W et al (2019) The surface wettability of TiO2 nanotube arrays: which is more important—morphology or chemical composition? J Porous Mater 26:91–98. https://doi.org/10.1007/s10934-018-0616-1

    Article  CAS  Google Scholar 

  30. Kairatovna AA, Khaisa A, Raigul J et al (2021) Preparation and electrochemical characterization of TiO2 as an anode material for magnesium-ion batteries. Bull Karaganda Univ Chem Ser 104:104–116. https://doi.org/10.31489/2021CH4/104-116

  31. Avchukir K, Burkitbayeva BD, Argimbayeva AM et al (2018) The kinetics of indium electroreduction from chloride solutions. Russ J Electrochem 54:1096–1103. https://doi.org/10.1134/S1023193518120042

    Article  CAS  Google Scholar 

  32. Li Y, Zuo P, Li R et al (2021) Formation of an artificial Mg2+-permeable interphase on Mg anodes compatible with ether and carbonate electrolytes. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.0c22520

    Article  Google Scholar 

  33. Brezesinski T, Wang J, Polleux J et al (2009) Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J Am Chem Soc 131:1802–1809. https://doi.org/10.1021/ja8057309

    Article  CAS  Google Scholar 

  34. Chao D, Zhu C, Yang P et al (2016) Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat Commun. https://doi.org/10.1038/ncomms12122

    Article  Google Scholar 

  35. Chao D, Liang P, Chen Z et al (2016) Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10:10211–10219. https://doi.org/10.1021/acsnano.6b05566

    Article  CAS  Google Scholar 

  36. Hu Z, Wang L, Zhang K et al (2014) MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew Chemie - Int Ed 53:12794–12798. https://doi.org/10.1002/anie.201407898

    Article  CAS  Google Scholar 

  37. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. John Wiley & Sons, New York, 2nd Edition, ISBN: 978–0–471–04372–0

Download references

Funding

The work was funded by the Ministry of Education and Science of the Republic of Kazakhstan — AP09260383.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akmaral Argimbayeva.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jumanova, R., Rakhymbay, G., Abildina, A. et al. Nanostructured TiO2 as anode material for magnesium-ion batteries. J Solid State Electrochem 27, 223–233 (2023). https://doi.org/10.1007/s10008-022-05307-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05307-7

Keywords

Navigation