Skip to main content
Log in

Porous spheres consisting of Li4Ti5O12 nanocrystals prepared through spray drying and their application as anodes for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, a facile method is developed for preparing porous microspheres of lithium titanate (Li4Ti5O12 [LTO]) nanocrystals for use as anode materials of lithium-ion batteries (LIBs). Spray drying combined with solid-state calcination have been applied for the preparation. A sol of TiO2 nanoparticles of several nanometers has been obtained through the quaternary-ammonium-hydroxide-assisted sol–gel process. TiO2 sol is used as a precursor for LTO to ensure a stable mixture of a TiO2 sol with the LiOH aqueous solution, which is crucial for spray drying. Microspheres of 0.5 and 3 μm consisting of LTO nanocrystals of approximately 200 nm are obtained by calcining the spray drying samples. The phase, composition, microstructure, porosity, and electrochemical properties of the obtained samples are investigated. When used as an anode material for LIBs, LTO microspheres exhibit a reversible capacity of 174.7 mAhg−1 at 0.1 C and an excellent cycling stability with capacity retention of 98.6% after 100 cycles at 1 C rate. Furthermore, a remarkable rate capacity of 57.8% is retained at 20 C (vs 0.1 C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Research data policy and data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Huang B, Pan ZF, Su XY, An L (2018) Recycling of lithium-ion batteries: recent advances and perspectives. J Power Sources 399:274. https://doi.org/10.1016/j.jpowsour.2018.07.116

    Article  CAS  Google Scholar 

  2. Lu M, Cheng H, Yang Y (2008) A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells. Electrochim Acta 53:3539. https://doi.org/10.1016/j.electacta.2007.09.062

  3. Wang W, Xiong F, Zhu S, Chen J, Xie J, An Q. Defect engineering in molybdenum-based electrode materials for energy storage. eSci 2:278. https://doi.org/10.1016/j.esci.2022.04.005

  4. Shen X, Liu H, Cheng XB, Yan C, Huang JQ (2018) Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes. Energy Storage Mater 12:161. https://doi.org/10.1016/j.ensm.2017.12.002

    Article  Google Scholar 

  5. Wang J, Liu, X-M, Yang H, Shen X-D (2011) Characterization and electrochemical properties of carbon-coated Li4Ti5O12 prepared by a citric acid sol–gel method. J Alloys Compd 509:712. https://doi.org/10.1016/j.jallcom.2010.07.215

  6. Yang H, Bang H, Amine K, Prakash J (2005) Investigations of the exothermic reactions of natural graphite anode for Li-ion batteries during thermal runaway. J Electrochem Soc 152:A73. https://doi.org/10.1149/1.1836126

    Article  CAS  Google Scholar 

  7. Yang H, Shen XD (2007) Dynamic TGA-FTIR studies on the thermal stability of lithium/graphite with electrolyte in lithium-ion cell. J Power Sources 167:515. https://doi.org/10.1016/j.jpowsour.2007.02.029

    Article  CAS  Google Scholar 

  8. Yuan T, Tan Z, Ma C, Yang J, Ma ZF, Zheng S (2017) Challenges of spinel Li4Ti5O12 for lithium-ion battery industrial applications. Adv Energy Mater 7. https://doi.org/10.1002/aenm.201601625

  9. Zhao B, Ran R, Liu ML, Shao ZP (2015) A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Mater Sci Eng R Rep 98:1

    Article  Google Scholar 

  10. Yi TF, Yang SY, Xie Y (2015) Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries. J Mater Chem A 3:5750. https://doi.org/10.1039/c4ta06882c

    Article  CAS  Google Scholar 

  11. Gangaja B, Nair S, Santhanagopalan D (2020) Surface-engineered Li4Ti5O12 nanostructures for high-power Li-ion batteries. Nanomicro Lett 12. https://doi.org/10.1007/s40820-020-0366-x

  12. Chen CH, Vaughey JT, Jansen AN, Dees DW, Kahaian AJ, Goacher T, Thackeray MM (2001) Studies of Mg-substituted Li[sub 4–x]Mg[sub x]Ti[sub 5]O[sub 12] spinel electrodes (0 ≤ x ≤ 1) for lithium batteries. J Electrochem Soc 148:A102. https://doi.org/10.1149/1.1344523

    Article  CAS  Google Scholar 

  13. Guerfi A, Charest P, Kinoshita K, Perrier M, Zaghib K (2004) Nano electronically conductive titanium-spinel as lithium ion storage negative electrode. J Power Sources 126:163. https://doi.org/10.1016/j.jpowsour.2003.08.045

    Article  CAS  Google Scholar 

  14. Zhang H, Yang Y, Xu H, Wang L, Lu X, He X (2022) Li4Ti5O12 spinel anode: fundamentals and advances in rechargeable batteries. Infomat 4. https://doi.org/10.1002/inf2.12228

  15. Tian S, Wang X, Yang J (2018) Enhanced lithium-storage performance of Li4Ti5O12 coated with boron-doped carbon layer for rechargeable Li-ion batteries. Solid State Ion 324:191. https://doi.org/10.1016/j.ssi.2018.07.009

  16. Kim DH, Kim J (2006) Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem Solid-State Lett 9:A439. https://doi.org/10.1149/1.2218308

    Article  CAS  Google Scholar 

  17. Jaiswal A, Horne CR, Chang O, Zhang W, Kong W, Wang E, Chern T, Doeff MM (2009) Nanoscale LiFePO4 and Li4Ti5O12for high rate Li-ion batteries. J Electrochem Soc 156:A1041. https://doi.org/10.1149/1.3223987

    Article  CAS  Google Scholar 

  18. Lu HW, Zeng W, Li YS, Fu ZW (2007) Fabrication and electrochemical properties of three-dimensional net architectures of anatase TiO2 and spinel Li4Ti5O12 nanofibers. J Power Sources 164:874. https://doi.org/10.1016/j.jpowsour.2006.11.009

  19. Sorensen EM, Barry SJ, Jung H-K, Rondinelli JM, Vaughey JT, Poeppelmeier KR (2006) Three-dimensionally ordered macroporous Li4Ti5O12: effect of wall structure on electrochemical properties. Chem Mater 18:482. https://doi.org/10.1021/cm052203y

    Article  CAS  Google Scholar 

  20. Pawlitzek F, Althues H, Schumm, S. Kaskel S (2017) Nanostructured networks for energy storage: vertically aligned carbon nanotubes (VACNT) as current collectors for high-power Li4Ti5O12 (LTO)//LiMn2O4(LMO) lithium-ion batteries. Batteries-Basel 3. https://doi.org/10.3390/batteries3040037

  21. Cheng L, Yan J, Zhu GN, Luo JY, Wang CX, Xia YY (2010) General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation. J Mater Chem 20:595. https://doi.org/10.1039/b914604k

    Article  CAS  Google Scholar 

  22. Gao J, Li JJ, He XM, Jiang CY, Wan CR (2011) Synthesis and electrochemical characteristics of LiFePO4/C cathode materials from different precursors. Int J Electrochem Sci 6:2818

    CAS  Google Scholar 

  23. Thackeray MM, Amine K (2021) Li4Ti5O12spinel anodes. Nat Energy 6:683. https://doi.org/10.1038/s41560-021-00829-2

    Article  CAS  Google Scholar 

  24. Jung HG, Myung ST, Yoon CS, Son SB, Oh KH, Amine K, Scrosati B, Sun YK (2011) Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy Environ Sci 4:1345. https://doi.org/10.1039/c0ee00620c

    Article  CAS  Google Scholar 

  25. Lan Z, Wu JH, Lin JM, Huang ML (2012) Controllable hydrothermal synthesis of nanocrystal TiO2 particles and their use in dye-sensitized solar cells. Sci China Chem 55:1308. https://doi.org/10.1007/s11426-012-4638-2

    Article  Google Scholar 

  26. Yang J, Mei S, Ferreira JMF (2001) Hydrothermal synthesis of nanosized titania powders: Influence of tetraalkyl ammonium hydroxides on particle characteristics. J Am Ceram Soc 84:1696

    Article  CAS  Google Scholar 

  27. Parks GA (1965) The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem Rev 65:177

    Article  CAS  Google Scholar 

  28. Bischoff BL, Anderson MA (1995) Peptization process in the sol-gel preparation of porous anatase (TiO2). Chem Mater 7:1772. https://doi.org/10.1021/cm00058a004

    Article  CAS  Google Scholar 

  29. Wei AJ, Mu JP, He R, Bai X, Liu Z, Zhang LH, Liu ZF, Wang YJ (2020) Preparation of Li4Ti5O12/carbon nanotubes composites and LiCoO2/ Li4Ti5O12 full-cell with enhanced electrochemical performance for high-power lithium-ion batteries. J Phys Chem Solids 138. https://doi.org/10.1016/j.jpcs.2019.109303

  30. Zhang F, Yi FY, Meng T, Gao AM, Shu D, Chen HY, Cheng HH, Zhou XP (2019) In Situ supramolecular self-assembly assisted synthesis of Li4Ti5O12-carbon-reduced graphene oxide microspheres for lithium-ion batterieS. ACS Sustain Chem Eng 7:916. https://doi.org/10.1021/acssuschemeng.8b04522

    Article  CAS  Google Scholar 

  31. Ji XY, Liu H, Wu XN, Lu QF, Li ZP, Pang YP (2020) Toward rational design of N-doped Li4Ti5O12@carbon anode materials for high-performance lithium-ion batteries. Ionics 26:1211. https://doi.org/10.1007/s11581-019-03324-7

    Article  CAS  Google Scholar 

  32. Chen JZ, Yang L, Fang SH, Tang YF (2010) Synthesis of sawtooth-like Li4Ti5O12 nanosheets as anode materials for Li-ion batteries. Electrochim Acta 55:6596. https://doi.org/10.1016/j.electacta.2010.06.015

    Article  CAS  Google Scholar 

  33. Shen LF, Uchaker E, Yuan CZ, Nie P, Zhang M, Zhang XG, Cao GZ (2012) Three-dimensional coherent titania-mesoporous carbon nanocomposite and its lithium-ion storage properties. ACS Appl Mater Interfaces 4:2985. https://doi.org/10.1021/am300357b

    Article  CAS  Google Scholar 

  34. Kang E, Jung YS, Kim GH, Chun J, Wiesner U, Dillon AC, Kim JK, Lee J (2011) Highly improved rate capability for a lithium-ion battery nano-Li4Ti5O12 negative electrode via carbon-coated mesoporous uniform pores with a simple self-assembly method. Adv Funct Mater 21:4349. https://doi.org/10.1002/adfm.201101123

    Article  CAS  Google Scholar 

  35. Qian DL, Gu YJ, Liu HQ, Chen YB, Wang J (2019) Preparation of Li4Ti5O12/C-C with super long high-rate cycle properties using glucose and polyurethane as double carbon sources for lithium ion batteries. J Appl Electrochem 49:341. https://doi.org/10.1007/s10800-019-01290-6

    Article  CAS  Google Scholar 

  36. Li X-Y, Chen Q-L, Yang M, Li Y-N, Ma J-B (2019) Recent developments in the effects of different dopants on the structure and property of lithium titanate material. NANO 14:1

    Article  Google Scholar 

  37. Xue B, Wang K, Tan Y, Li QL, Sun JM (2019) Fabrication and performance of Li4Ti5O12/cotton-driven carbon fiber as anode for lithium-ion batteries. Ion 25:2535. https://doi.org/10.1007/s11581-018-2738-5

    Article  CAS  Google Scholar 

  38. Xu D, Wang PF, Yang R (2017) Conducting polythiophene-wrapped Li4Ti5O12 spinel anode material for ultralong cycle-life Li-ion batteries. Ceram Int 43:4712. https://doi.org/10.1016/j.ceramint.2016.12.116

    Article  CAS  Google Scholar 

  39. Cai YZ, Huang DQ, Ma ZL, Wang HQ, Huang YG, Wu XW, Li QY (2019) Construction of highly conductive network for improving electrochemical performance of lithium iron phosphate. Electrochim Acta 305:563. https://doi.org/10.1016/j.electacta.2019.02.114

    Article  CAS  Google Scholar 

  40. Zhu GN, Du YJ, Wang YG, Yu AS, Xia YY (2013) Electrochemical profile of lithium titanate/hard carbon composite as anode material for Li-ion batteries. J Electroanal Chem 688:86. https://doi.org/10.1016/j.jelechem.2012.07.035

    Article  CAS  Google Scholar 

  41. Hsiao KC, Liao SC, Chen JM (2008) Microstructure effect on the electrochemical property of Li4Ti5O12 as an anode material for lithium-ion batteries. Electrochim Acta 53:7242. https://doi.org/10.1016/j.electacta.2008.05.002

    Article  CAS  Google Scholar 

  42. Wang L, Wang F, Zhu JF, Zhang X, Tang Y, Wang X (2018) Synthesis and electrochemical performance of three-dimensional ordered hierarchically porous Li4Ti5O12for high performance lithium ion Batteries. Ceram Int 44:1296. https://doi.org/10.1016/j.ceramint.2017.08.043

    Article  CAS  Google Scholar 

  43. Chen ZH, Belharouak I, Sun YK, Amine K (2013) Titanium-based anode materials for safe lithium-ion batteries. Adv Funct Mater 23:959. https://doi.org/10.1002/adfm.201200698

    Article  CAS  Google Scholar 

  44. Wang DD, Shan ZQ, Liu XY, Na R, Wang J, Liu HT, Tian JH (2018) High-rate Li4Ti5O12/porous activated graphene nanoplatelets composites using LiOH both as lithium source and activating agent. Electrochim Acta 262:9. https://doi.org/10.1016/j.electacta.2017.12.185

    Article  CAS  Google Scholar 

  45. Kuo Y-C, Lin J-Y (2014) One-pot sol-gel synthesis of Li4Ti5O12/C anode materials for high-performance Li-ion batteries. Electrochim Acta 142:43. https://doi.org/10.1016/j.electacta.2014.07.103

  46. Li BH, Ning F, He YB, Du HD, Yang QH, Ma J, Kang FY, Hsu CT (2011) Synthesis and characterization of long life Li4Ti5O12/C composite using amorphous TiO2 nanoparticles. Int J Electrochem Sci 6:3210

    CAS  Google Scholar 

  47. Wang Z, Yu S, Chen J, Li Z, Huang J, Yuan C, Hong W, Peng D, Wu Z, Fang Y (2012) P-221 - Association between microrna-206 gene polymorphisms and bipolar disorder in the han chinese population. Eur Psychiatry 27:1. https://doi.org/10.1016/S0924-9338(12)74388-2

  48. Wang J, Mo H, Wang F, Jin F (2011) Exploring the network structure and nodal centrality of China’s air transport network: a complex network approach. J Transp Geogr 19:712. https://doi.org/10.1016/j.jtrangeo.2010.08.012

  49. Bian M, Yang Y, Tian L (2018) Carbon-free Li4Ti5O12 porous nanofibers as high-rate and ultralong-life anode materials for lithium-ion batteries. J Phys Chem Solids 113:11. https://doi.org/10.1016/j.jpcs.2017.10.006

  50. Zhou L, Zhang XS, Huang MY, Huang JJ (2018) A facile way to prepare carbon-coated Li4Ti5O12 porous fiber with excellent rate performance as anode in lithium ion battery. Electrochim Acta 283:1418. https://doi.org/10.1016/j.electacta.2018.07.127

    Article  CAS  Google Scholar 

  51. Li DL, Zhang XX, Miao XF, Liu YC, Chen SJ, Chen YQ, Wang W, Zhang YN (2019) Solid-state synthesized Li4Ti5O12 for ultrafast lithium ion storage enabled by carbon-coating induced particle size tailoring. J Alloys Compd 797:1258. https://doi.org/10.1016/j.jallcom.2019.05.164

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Key R&D Program of China (2021YFB2400200) and the Natural Science Foundation of Shandong Province (ZR2020ME057 and ZR202102190181).

Author information

Authors and Affiliations

Authors

Contributions

Zepeng Pu, Chao Wang, and Hongliang Li contributed to the research conception and experiment design. Material preparation, data collection, and analysis were performed by Zepeng Pu, Zongyu Wang, Liyan Dang, Haowei Li, and Xuehua Liu. The draft of the manuscript was written by Zepeng Pu. Aiping Fu, Chao Wang, and Hongliang Li modified the draft of the manuscript. All the authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Chao Wang or Hongliang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 158 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, Z., Wang, Z., Dang, L. et al. Porous spheres consisting of Li4Ti5O12 nanocrystals prepared through spray drying and their application as anodes for lithium-ion batteries. J Solid State Electrochem 27, 37–46 (2023). https://doi.org/10.1007/s10008-022-05302-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05302-y

Keywords

Navigation