Skip to main content
Log in

Nitrogen-doped carbon aerogel synthesis by solvothermal gelation for supercapacitor application

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nitrogen-doped mesoporous carbon aerogel having high surface area and high nitrogen content was synthesized by sol–gel method for supercapacitor application. The synthesis process involved the use of solvothermal-based high pressure gelation followed by ambient drying, carbonization and activation for surface area enhancement. Melamine was used as nitrogen precursor in carbon aerogel, which was added to resorcinol–furfuraldehyde sol in pre-polymerized state. Melamine to resorcinol ratio was varied to obtain optimal composition intended for achieving high surface area and mesoporosity for better electrochemical performance. Melamine to resorcinol ratio of 0.8 was found to be optimum, which compared to other samples has the highest surface area of 1520 m2g−1and mesopore surface area contribution of 375 m2g−1 with nitrogen content of 10.6 atomic% in carbon network. Owing to these properties, the electrodes formed with this material showed a high specific capacitance of 240 Fg−1 at a current density of 1 Ag−1. Further, these electrodes showed good cyclic stability with more than 95% capacitance retention in 5000 cycles. Significantly better electrochemical performance of nitrogen-doped carbon aerogel as electrode is attributed to the optimized composition with predominant mesopores, better conductivity and high wettability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hao L, Xianglong L, Linjie Z (2013) Carbonaceous electrode materials for supercapacitors. Adv Mater 25:3899–3904

    Article  CAS  PubMed  Google Scholar 

  2. Xichuan L, ShaominL, RuiM, JunM, Li-Min L, LiujunC, Woon-Ming L, Hao L (2015) Porous structure design of carbon xerogels for advanced supercapacitor. Appl Energy 153(C):32–40

  3. Hall PJ, Mirzaeian M, Fletcher SI, Sillars FB, Rennie AJR, Shitta-Bey GO,Wilson G, Cruden A, Carter R (2010) Energy storage in electrochemical capacitor: designing functional materials to improve performance. Energy Environ Sci 3:1238–1251

    Article  CAS  Google Scholar 

  4. Zhai YP, Dou YQ, Zhao DY, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850

    Article  CAS  PubMed  Google Scholar 

  5. Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ Sci 7:1250–1280

    Article  CAS  Google Scholar 

  6. Cakici M, Kakarla RR, Alonso-Marroquin F (2017) Advanced electrochemical energy storage supercapcitors based on flexible carbon fiber fabric coated with uniform coral like MnO2 structured electrodes. Chem Eng J 309:151–158

    Article  CAS  Google Scholar 

  7. Ke Q, Wang J (2016) Graphene-based materials for suparcapacitor electrodes. A Rev J Materiom 2(1):37–54

    Article  Google Scholar 

  8. Huang T, Liu Z, Yu F, Wang F, Li D, Fu L, Chen Y, Wang H, Xie Q, Yao S, Wu Y (2020) Boosting capacitive sodium-ion storage in electrochemically exfoliated graphite for sodium-ion capacitors. ACS Appl Mater Interf 12(47):52635–52642

    Article  CAS  PubMed  Google Scholar 

  9. Moussa G, Hajjar-Garreau S, Taberna PL, Simon P, Ghimbeu CM (2018) Eco- friendly synthesis of nitrogen doped mesoporous carbon for supercapacitor application. J Carbon Res C 4(2):20–37

    Article  Google Scholar 

  10. Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y (2006) Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater 5:987–994

    Article  CAS  PubMed  Google Scholar 

  11. Li F, Xie L, Sun G, Kong Q, Su F, Cao Y, Wei J, Ahmad A, Guo X, Chen CM (2019) Resorcinol-formaldehyde based carbon aerogel: preparation, structure and applications in energy storage devices. Microporous Mesoporous Mater 279(1):293–315

    Article  CAS  Google Scholar 

  12. Calvo EG, Ferrera-Lorenzo N, Menendez JA, Arenillas A (2013) Microwave synthesis of micro-mesoporous activated carbon xerogel for high performance supercapacitors. Microporous Mesoporous Mater 168:206–212

    Article  CAS  Google Scholar 

  13. Macias C, Haro M, Rasines G, Parra JB, Ania CO (2013) Carbon-black directed synthesis of mesoporous aerogels. Carbon 63:487–497

    Article  CAS  Google Scholar 

  14. Jin H, Zhang H, Ma Y, Xu T, Zhong H, Wang M (2010) Stable support based on highly graphitic carbon xerogel for proton exchange membrane fuel cells. J Power Sources 195:6323–6328

    Article  CAS  Google Scholar 

  15. Singh A, Kohli DK, Singh R, Bhartiya S, Singh MK, Karnal AK (2021) Incorporation of graphitic porous carbon for synthesis of composite carbon aerogel with enhanced electrochemical performance. J Electrochem Sci Technol 12(2):204–211

    Article  CAS  Google Scholar 

  16. Deng Y, Xie Y, Zou K, Ji X (2016) Review on recent advances in nitrogen doped carbons: preparation and applications in supercapacitors. J Mater Chem A4:1144–1173

    Article  Google Scholar 

  17. Song LT, Wu ZY, Liang HW, Zhou F, Yu ZY, Xu L, Pan Z, Yu SH (2016) Macroscopic-scale synthesis of nitrogen-doped carbon nanofiber aerogels by template-directed hydrothermal carbonization of nitrogen-containing carbohydrates. Nano Energy 19:117–127

    Article  CAS  Google Scholar 

  18. Chen S, Bi J, Zhao Y, Yang L, Zhang C, Ma Y, Wu Q, Wang X, Hu Z (2012) Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv Mater 24:5593–5597

    Article  CAS  PubMed  Google Scholar 

  19. Chen C, Yu D, Zhao G, Du B, Tang W, Sun L, Sun Y, Besenbacher F, Yu M (2016) Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors. Nano Energy 27:377–389

    Article  CAS  Google Scholar 

  20. Horikawa T, SakaoN SekidaT, Hayashi J, Do DD, KatohaM, (2012) Preparation of nitrogen doped porous carbon by ammonia gas treatment and the effects of N doping on water adsorption. Carbon 50(5):1833–1842

    Article  CAS  Google Scholar 

  21. Dutta S, Bhaumik A, Wu KCW (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci 7:3574–3592

    Article  CAS  Google Scholar 

  22. Zhang W, Zhang Y, Liu J (2013) Preparation of nitrogen hybrid ordered mesoporous carbons from melamine-phenol-formaldehyde resoles by soft-template method. Adv Mater Res 652:223–227

    Google Scholar 

  23. Zhong H, Zhang H, Liu S, Deng C, Wang M (2013) Nitrogen-enriched carbon from melamine resins with superior oxygen reduction reaction activity. Chemsuschem 6:807–812

    Article  CAS  PubMed  Google Scholar 

  24. Xin G, Wang Y, Jia S, Tian P, Zhou S, Zhang J (2017) Synthesis of nitrogen doped mesoporous from polyaniline with an F127 template for high performance supercapacitors. Appl Surf Sci 422:654–660

    Article  CAS  Google Scholar 

  25. Yu J, Guo M, Muhammad F, Wang A, Zhang F, Qin L, Zhu G (2014) One pot synthesis of highly ordered nitrogen containing mesoporous carbon with resorcinol-urea-formaldehyde resin for CO2 capture. Carbon 69:502–514

    Article  CAS  Google Scholar 

  26. Wei J, Zhou D, Sun Z, Deng Y, Xia Y, Zhao D (2013) A controllable synthesis of rich nitrogen doped ordred mesoporous carbon for CO2 capture and supercapacitor. Adv Func Mater 23:2322–2328

    Article  CAS  Google Scholar 

  27. Yang X, Wu D, Chen X, Fu R (2010) Nitrogen-enriched nanocarbons with a 3-D continuous mesopore structure from polyacrylonitrile for supercapacitor application. J Phys Chem C 114:8581–8586

    Article  CAS  Google Scholar 

  28. Lee EJ, Lee YJ, Kim JK, Lee M, Yi J, Yoon JR, Song IK (2016) Preparation and characterization of nitrogen-enriched carbon aerogel as a supercapacitor electrode material. J Nanosci Nanotechnol 16(10):10413–10419

    Article  CAS  Google Scholar 

  29. Fuertesb AB, Lotaa G, Centenob TA, Frackowiaka E (2005) Templated mesoporous carbons for supercapacitor application. Electrochim Acta 50:2799–2805

    Article  Google Scholar 

  30. Singh R, Singh MK, Bhartiya S, Singh A, Kohli DK, Ghosh PC, Meenakshi S, Gupta PK (2017) Facile synthesis of highly conducting mesoporous carbon aerogel as platinum support for PEM fuel cells. Int J Hydrogen Energy 42:11110–11117

    Article  CAS  Google Scholar 

  31. Cai X, Tan G, Deng Z, Liu J, Gui D (2019) Preparation of hierarchical porous carbon aerogels by microwave assisted sol gel process for supercapacitors. Polymers 11:429–440

    Article  PubMed Central  Google Scholar 

  32. Dhaka RS, Shukla AK, Maniraj M, D’Souza SW, Nayak J, Barman SR (2010) An ultrahigh vacuum compatible sample holder for studying complex metal surfaces. Rev Sci Instrum 81:043907–043911

    Article  CAS  PubMed  Google Scholar 

  33. Li Y, Xu X, He Y, Jiang Y, Lin K (2017) Nitrogen doped macroporous carbon as electrode material for high capacity of supercapacitor. Polymers 9(1):2–18

    Article  PubMed Central  Google Scholar 

  34. Mojtaba M, Abbas Q, Gibson D, Mazur M (2019) Effect of nitrogen doping on electrochemical performance of resorcinol formaldehyde based carbon aerogels as electrode material for supercapacitor applications. Energy 173:809–819

    Article  Google Scholar 

  35. Bakos LP, Mensah J, László K, Igricz T, Szilagyi IM (2018) Preparation and characterization of a nitrogen-doped mesoporous carbon aerogel and its polymer precursor. J Therm Anal Calorim 134:933–939

    Article  CAS  Google Scholar 

  36. Wang JG, Liu H, Sun H, Hua W, Wang H, Liu X, Wei B (2018) One pot synthesis of nitrogen doped ordered mesoporous carbon spheres for high rate and long-cycle life supercapacitors. Carbon 127:85–92

    Article  CAS  Google Scholar 

  37. Hulicova D, Yamashita J, Soneda Y, Hatori H, Kodama M (2005) Supercapacitor prepared from melamine based carbon. Chem Mater 17(5):1241–1247

  38. El-Mahdy AF, Young C, Kim J, You J, Yamauchi Y, Kuo SW (2019) Hollow microspherical and microtubular [3 + 3] carbazole-based covalent organic frameworks and their gas and energy storage applications. ACS Appl Mater Interf 11:9:9343–9354

  39. Shin JK, Lee CS, Lee KR, Eun KY (2001) Effect of residual stress on the Raman spectrum analysis of tetrahedral amorphous carbon films. Appl Phys Lett 78:631–633

    Article  CAS  Google Scholar 

  40. Ferrari AC, Rodil SE, Robertson J (2000) Interpretation of Raman spectra of disordered and amourphous carbon. Phys Rev B 61:14095–14107

    Article  CAS  Google Scholar 

  41. Hoque MK, Behan JA, Stamatin SN, Zen F, PerovaTS CPE (2019) Capacitive storage at nitrogen doped amorphous carbon electrodes: structural and chemical effect of nitrogen incorporation. Royal Soc Chem Adv 9:4063–4071

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun F, Gao J, Pi X, Wang L, Yang Y, Qu Z, Wu S (2017) High performance aqueous supercapacitor based on highly nitrogen doped carbon nanospheres with unimodal mesoporosity. J Power Sources 337:189–196

    Article  CAS  Google Scholar 

  43. Arkhipov VI, Heremans P, Emelianova EV, Baessler H (2005) Effect of doping on the density of stats distribution and carrier hopping in disordered organic semiconductors. Phys Rev B 71:045214–045217

    Article  Google Scholar 

  44. Lei E, Li W, Sun J, Wu Z, Liu S (2019) N-doped carbon aerogel obtained from APMP fiber aerogel saturated with rhodamine dye and their application as supercapacitor electrodes. Appl Sci 9(4):618–629

    Article  CAS  Google Scholar 

  45. Lei E, Li W, Sun J, Wu Z, Liu S (2019) N-doped carbon aerogels saturated with rhodamine dye and their application as supercapacitor electrodes. Appl Sci 9:618–629

    Article  CAS  Google Scholar 

  46. Moussa G, Hajjar-Garreau S, Taberna PL, Simon P, Ghimbeu CM (2018) Eco-friendly synthesis of nitrogen–doped mesoporous carbon for supercapacitor application. J Carbon Res 4:20

    Article  Google Scholar 

  47. Wood KN, Hayre RO, Pylypenko S (2014) Recent progress on nitrogen/carbon structures designed for use in energy and sustainability application. Energy Environ Sci 7:1212–1249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the contribution of Dr. Alka A. Ingale, Dr. Rahul Agrawal, Dr. Gurvinder Singh, and Shri Prem Kumar in the analysis of samples used in this study. Dr. S. R. Barman, Dr. N. P. Lalla of UGC-DAE Consortium for Scientific Research, Indore are thanked for providing the XPS facility, helpful discussion during TEM data analysis and for providing TEM data respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Singh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhartiya, S., Singh, R., Singh, A. et al. Nitrogen-doped carbon aerogel synthesis by solvothermal gelation for supercapacitor application. J Solid State Electrochem 26, 2829–2839 (2022). https://doi.org/10.1007/s10008-022-05289-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05289-6

Keywords

Navigation