Skip to main content

Advertisement

Log in

Preparation and electrochemical properties of Cu3P/rGO nanocomposite protection strategy for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Copper phosphide (Cu3P) has emerged as a promising new lithium-ion electrode material due to its high theoretical capacity and abundant earth resources. However, there are serious volume expansion and agglomeration problems in the charging and discharging process, resulting in poor electrochemical performance and low rate performance. We synthesized 3D Cu3P/rGO (CPG) composite nanomaterials by normal-temperature agitation and high-temperature calcination. The mechanism underlying the enhancement in the electrochemical behavior of the composite electrode material by the stable surface/interface structure of the composite material, the nanostructure of metal phosphide, and the synergistic effect between the nanostructure of the metal phosphide and the carbon material were investigated. As an active material, CPG showed good electrochemical performance. When the current density was 0.5 C, after 200 cycles, it still maintained specific capacity at 716.8 mAh g−1, and it also showed good performance at high current density (after 330 cycles, at 5 C), with specific capacity of 496.6 mAh g−1. At the same time, the CPG composites showed obvious pseudocapacitive characteristics (59.6% of the total capacitance was accounted for when the scanning rate was 0.4 mV s−1). The results show that the modified composites of rGO effectively improved the electrochemical performance of Cu3P. This provides theoretical support for the development of new lithium-ion battery anode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li Z, He M, Bo B, Wei H, Wen H, Liu Y, Zhang K, Zhang P, Li B (2021) Bi2S3 nanorods hosted on rGO sheets from pyrolysis of molecular precursors for efficient li-ion storage. Energy Environ Mater 4:577–585

    Article  CAS  Google Scholar 

  2. Li T, Dong H, Shi Z, Yue H, Yin Y, Li X, Zhang H, Wu X, Li B, Yang S (2022) Composite nanoarchitectonics with CoS2 nanoparticles embedded in graphene sheets for an anode for lithium-ion batteries. Nanomaterials 12:724

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li L, Hu Z, Lu Y, Zhao S, Zhang Q, Liu Q, Chou S (2021) CuP2 as high-capacity and long-cycle-life anode for potassium-ion batteries. J Energy Chem 63:246–252

    Article  CAS  Google Scholar 

  4. Yang Z, Tuo Y, Lu Q, Chen C, Liu M, Liu B, Duan X, Zhou Y, Zhang J (2022) Hierarchical Cu3P-based Nanoarrays on nickel foam as efficient electrocatalysts for overall water splitting. Green Energy Environ 7:236–245

    Article  Google Scholar 

  5. Yam N, Jiang M, Key B, Grey C (2009) Identifying the local structures formed during lithiation of the conversion material, iron fluoride, in a li-ion battery: a solid-state NMR, x-ray diffraction, and pair distribution function analysis study. J Am Chem Soc 131:10525–10536

    Article  Google Scholar 

  6. Muruganantham R, Wang F, Liu W (2022) A green route N, S-doped hard carbon derived from fruit-peel biomass waste as an anode material for rechargeable sodium-ion storage applications. Electrochim Acta 424:140573

    Article  CAS  Google Scholar 

  7. Yin Y, Zhang Y, Liu N, Fan L, Zhang N (2020) Metal-organic frameworks-derived porous yolk-shell MoP/Cu3P@carbon microcages as high-performance anodes for sodium-ion batteries. Energy Environ Mater 3:529–534

    Article  CAS  Google Scholar 

  8. Liu S, He X, Zhu J, Xu L, Tong J (2022) Cu3P/RGO nanocomposite as a new anode for lithium-ion batteries. Sci Report 6:35189

    Article  Google Scholar 

  9. Liu Y, Sun K, Cui X, Li B, Jiang J (2020) Defect rich graphene like carbon sheets derived from biomass as efficient electrocatalysts for rechargeable zinc air battery. ACS Sustain Chem Eng 8:2981–2989

    Article  CAS  Google Scholar 

  10. Zhao Y, Liu J, Ding C (2018) Rare earth transition metal chalcogenides. CrystEngComm 20:2175–2182

    Article  CAS  Google Scholar 

  11. Lu Y, Wang X, Zhao T, Wang S, Huang C, Gu J, Mao X (2014) Graphene-wrapped Ni2P materials: a 3D porous architecture with improved electrochemical performance. J Solid State Electrochem 18:2245–2253

    Article  CAS  Google Scholar 

  12. Xu X, Feng J, Liu J, Lv F, Hu R, Yang F, Yang L, Yang Q, Zhu M (2019) Robust spindle structured FeP@C for high-performance lithium-ion batteries anode. Electrochim Acta 312:224–233

    Article  CAS  Google Scholar 

  13. Liu S, Zhu J, Liu H (2015) Polymer-assisted synthesis of Cu3P hollow spheres and its electrochemical properties. Nanosci Nanotechnol Lett 346:347–352

    Article  Google Scholar 

  14. Ni S, Ma J, Lv X, Yang X, Zhang L (2014) The fine electrochemical performance of porous Cu3P/Cu and the high energy density of Cu3P as anode for Li-ion batteries. J Mater Chem A 2:20506–20509

    Article  CAS  Google Scholar 

  15. Mao J, Fan X, Luo C, Wang C (2016) Building self-healing alloy architecture for stable sodium-ion battery anodes: a case study of tin anode materials. ACS Appl Mater Interfaces 8:7147–7155

    Article  CAS  PubMed  Google Scholar 

  16. Han Z, Wang BB, Liu XJ, Wang G, Wang H, Bai J (2018) Peapod-like one-dimensional (1D) CoP hollow nanorods embedded into graphene networks as an anode material for lithium-ion batteries. J Mater Sci 53:8445–8459

    Article  CAS  Google Scholar 

  17. Huang H, Masamichi Y (2018) Structural evolution of hydrothermally derived reduced graphene oxide. Sci Rep-uk 8:6849–6853

    Article  Google Scholar 

  18. Wang B, Liu A, Abdulla W, Wang D, Zhao X (2015) Desired crystal oriented LiFePO4 nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage. Nanoscale 7:8819–8828

    Article  CAS  PubMed  Google Scholar 

  19. Sun H, Mei L, Liang J, Zhao Z, Li M, Han G, Huang Y, Duan X (2017) Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356:599–604

    Article  CAS  PubMed  Google Scholar 

  20. Xu P, Dai K, Yang C, Wang X, Zhou R, Shao J, Zhang M, Huang Q, Shu Z (2020) Efficient synthesis of Cu3P nanoparticles confined in 3D nitrogen-doped carbon networks as high performance anode for lithium/sodium-ion batteries. J Alloy Compd 849:156436

    Article  CAS  Google Scholar 

  21. Chen B, Pan J, Li C, Liu C, Liu L, Yang T, Li W, Li H, Chen M (2017) Strongly coupled FeP@Reduced graphene oxide nanocomposites with superior performance for lithium-ion batteries. J Alloy Compd 728:328–336

    Article  Google Scholar 

  22. Pan E, Jin Y, Zhao C, Jia M, Chang Q, Jia M, Wang L, He X (2019) Conformal hollow carbon sphere coated on Sn4P3 microspheres as high-rate and cycle-stable anode materials with superior sodium storage capability. ACS Appl Energy Mater 2:1756–1764

    Article  CAS  Google Scholar 

  23. Huang X, Zeng Z, Fan Z, Liu J, Zhang H (2012) Graphene-based electrodes. Adv Mater 24:5979–6004

    Article  CAS  PubMed  Google Scholar 

  24. Zheng Z, Wu H, Liu H, Zhang Q, He X, Yu S, Feng J, Kostecki R, Liu P, Peng D, Liu M, Wang M (2020) Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets. ACS Nano 14:9545–9561

    Article  CAS  PubMed  Google Scholar 

  25. Kim S (2016) The facile synthesis and enhanced sodium-storage performance of a chemically bonded CuP2 /C hybrid anode. Chem Commun 43:4337–4340

    Article  Google Scholar 

  26. Li G, Wang C, Chang W (2016) Phosphorus-richcopper phosphide nanowires for field-effect transistors and lithium-ion batteries. ACS Nano 10:8632–8644

    Article  CAS  PubMed  Google Scholar 

  27. Pan E, Jin Y, Zhao C (2019) Conformal hollow carbon sphere coated on Sn4P3 microspheres as high-rate and cycle-stable anode materials with superior sodium storage capability. ACS Appl Energy Mater 3:1756–1764

    Article  Google Scholar 

  28. Liu Z, Yang S, Sun B (2020) Low-temperature synthesis of honeycomb CuP2@C in molten ZnCl2 salt for high-performance lithium ion batteries. Angew Chem Int Ed Eng 59:1975–1979

    Article  CAS  Google Scholar 

  29. Mauvernay B, Doublet M, Monconduit L (2006) Redox mechanism in the binary transition metal phosphide Cu3P. J Phys Chem Solids 67:1252–1257

    Article  CAS  Google Scholar 

  30. Pan Y, Cheng X, Gong L, Zhang H (2018) Highly reversible na ion storage in N-doped polyhedral carbon coated transition metal chalcogenides by optimizing the nanostructure and surface engineering. J Mater Chem A 6:18967–18978

    Article  CAS  Google Scholar 

  31. Harper A, Evans M, Morris A (2020) Computational investigation of copper phosphides as conversion anodes for lithium-ion batteries. Chem Mater 32:6629–6639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen X, Yao Y, Zhang R, Cheng X, Zhang Q (2020) A diffusion-reaction competition mechanism to tailor lithium deposition for lithium-metal batteries. Angew Chem 59:7743–7747

    Article  CAS  Google Scholar 

  33. Pan E, Jin Y, Zhao C (2019) Conformal hollow carbon sphere coated on Sn4P3 microspheres as high-rate and cycle-stable anode materials with superior sodium storage capability. ACS Appl Energy Mater 2:1756–1764

    Article  CAS  Google Scholar 

  34. Xiong Q (2016) Controllable growth of MoS2/C flower-like microspheres with enhanced electrochemical performance for lithium ion batteries. J Alloy Compd 673:215–219

    Article  CAS  Google Scholar 

  35. Lou P, Cui Z, Jia Z (2017) Monodispersed carbon-coated cubic NiP2 nanoparticles anchored on carbon nanotubes as ultra-long-life anodes for reversible lithium storage. ACS Nano 11:3705–3715

    Article  CAS  PubMed  Google Scholar 

  36. Zhao F, Han N, Huang W, Li J, Ye H, Chen F, Li Y (2015) Nanostructured CuP2/C composites as high performance anode materials for sodium ion batteries. J Mater Chem A 3:21754

    Article  CAS  Google Scholar 

  37. Singh K, Bae E, Yu J (2015) Fe–P: a new class of electroactive catalyst for oxygen reduction reaction. J Am Chem Soc 137:3165–3168

    Article  CAS  PubMed  Google Scholar 

  38. Han F, Zhang C, Yang J, Ma G, He K, Li X (2016) Well-dispersed and porous FeP@C nanoplates with stable and ultra-fast lithium storage performance through conversion reaction mechanism. J Mater Chem A 4:12781–12789

    Article  CAS  Google Scholar 

  39. Li W, Chou S, Wang J, Kim J, Liu H, Dou S (2014) Integration of an inorganic semiconductor with a metal-organic framework: a platform for enhanced gaseous photocatalytic reactions. Adv Mater 26:4037–4042

    Article  CAS  PubMed  Google Scholar 

  40. Galushkin NE, Yazvinskaya NN, Galushkin DN (2020) A critical study of using the peukert equation and its generalizations for determining the remaining capacity of lithium-ion batteries. Appl Sci 10:5518

  41. Cho J, Won J, Kang Y, Lee J (2016) Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nano Energy 26:466–478

    Article  CAS  Google Scholar 

  42. Lu S, Wang Z, Zheng J, He Z, Tong H, Zang J (2020) In situ-formed hollow cobalt sulfide wrapped by reduced graphene oxide as an anode for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 12:2671–2678

    Article  CAS  PubMed  Google Scholar 

  43. Chen H, Gao S, Lan X, Wang W, Ke B, Lu S, Gu C, Li G (2021) Plasma phosphorization of self-adaptive electrode Cu3P@RGO for lithium ion storage. Vacuum 193:110537

  44. Zhang Z, Wu C, Chen Z, Li H, Cao H, Luo X, Fang Z, Zhu Y (2020) Atomic layer deposition of nickel carbide for supercapacitors and electrocatalytic hydrogen evolution. J Mater Chem A 8:3369–3378

    Article  CAS  Google Scholar 

  45. Li L, Hu Z (2021) CuP2 as high-capacity and long-cycle-life anode for potassium-ion batteries. J En Chem 63:146–151

    Google Scholar 

  46. Li G, Wang Y, Guo H, Liu Z, Chen P, Zheng X, Sun J, Chen H, Zheng J, Li X (2020) Direct plasma phosphorization of Cu foam for li ion batteries. J Mater Chem A 8:16920–16925

    Article  CAS  Google Scholar 

  47. Kim S-O, Manthiram A (2016) The facile synthesis and enhanced sodium-storage performance of a chemically bonded CuP2/C hybrid anode. Chem Commun 52:4337–4340

    Article  CAS  Google Scholar 

  48. Ying J, Xie M, Hu F, Ye Z, Zhang Y, Wang Z, Zhou Y, Li L, Chen R (2021) Cobalt selenide hollow polyhedron En-capsulated in graphene for high-performance lithium/sodium storage. Small 17:2102893

    Article  Google Scholar 

  49. Kim SO, Manthiram A (2017) Phosphorus-rich CuP2 embedded in carbon matrix as a high-performance anode for lithium-ion batteries. ACS Appl Mater Interfaces 9:16221–16227

    Article  CAS  PubMed  Google Scholar 

  50. Yun Y, Xi B, Gu Y, Tian F, Chen W, Feng J, Qian Y, Xiong S (2022) Cu3P nanoparticles confined in nitrogen/phosphorus dual-doped porous carbon nanosheets for efficient potassium storage. J Energy Chem 66:339–347

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China (11904081); Key Science and Technology Project of Henan Province, (No. 222102230062); Henan Provincial Key Young Teachers Training Program, (No. 2019GGJS267) and Xinxiang Science and Technology Project (GG2020013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanrong Ni.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 760 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, Y., Li, C., Gao, J. et al. Preparation and electrochemical properties of Cu3P/rGO nanocomposite protection strategy for lithium-ion batteries. J Solid State Electrochem 26, 2873–2881 (2022). https://doi.org/10.1007/s10008-022-05283-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05283-y

Keywords

Navigation