Skip to main content
Log in

Effect of ionotropic gelation of COOH-functionalized polymeric binders in multivalent ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Multivalent ion batteries (MIBs) have received much attention as alternatives to the current lithium-ion batteries (LIBs) because of their high energy density and the possibility of using raw materials with high natural abundance. However, the mechanochemical stability and key electrochemical performance of MIB electrodes are easily impaired during cycling by the large volume expansion of active materials and sluggish ion transport, raising the necessity of developing advanced binder designs. Herein, we report a systematic investigation of polysaccharide and polyacrylic acid binders with carboxylic acid functional groups for MIBs based on Mg2+, Ca2+, Zn2+, and Al3+ in comparison with their monovalent counterpart. These binders with carboxylic acid functional groups form a rigid passivation layer on the electrode surface via the so-called egg-box mechanism involving the multivalent cations, imposing resistance and shortening the cycle life of the MIB cells. The series of comparative analyses provide useful information on the effect and design of popular carboxylic acid-functionalized binders for incorporation in MIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  PubMed  Google Scholar 

  2. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    Article  CAS  PubMed  Google Scholar 

  3. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    Article  CAS  PubMed  Google Scholar 

  4. Whittingham MS (2014) Ultimate limits to intercalation reactions for lithium batteries. Chem Rev 114:11414–11443

    Article  CAS  PubMed  Google Scholar 

  5. Goodenough JB (2013) Evolution of strategies for modern rechargeable batteries. Acc Chem Res 46:1053–1061

    Article  CAS  PubMed  Google Scholar 

  6. Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6:2265–2279

    Article  CAS  Google Scholar 

  7. Lu D, Liu H, Huang T, Xu Z, Ma L, Yang P, Qiang P, Zhang F, Wu D (2018) Magnesium ion based organic secondary batteries. J Mater Chem A 6:17297–17302

    Article  CAS  Google Scholar 

  8. Arroyo-de Dompablo ME, Ponrouch A, Johansson P, Palacin MR (2020) Achievements, challenges, and prospects of calcium batteries. Chem Rev 120:6331–6357

    Article  CAS  PubMed  Google Scholar 

  9. Shin J, Lee J, Park Y, Choi JW (2020) Aqueous zinc ion batteries: focus on zinc metal anodes. Chem Sci 11:2028–2044

    Article  PubMed  PubMed Central  Google Scholar 

  10. Leisegang T, Meutzner F, Zschornak M, Munchgesang W, Schmid R, Nestler T, Eremin RA, Kabanov AA, Blatov VA, Meyer DC (2019) The aluminum-ion battery: a sustainable and seminal concept? Front Chem 7:268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Canepa P, Sai Gautam G, Hannah DC, Malik R, Liu M, Gallagher KG, Persson KA, Ceder G (2017) Odyssey of multivalent cathode materials: open questions and future challenges. Chem Rev 117:4287–4341

    Article  CAS  PubMed  Google Scholar 

  12. Liu Q, Wang H, Jiang C, Tang Y (2019) Multi-ion strategies towards emerging rechargeable batteries with high performance. Energy Storage Mater 23:566–586

    Article  Google Scholar 

  13. Mao M, Gao T, Hou S, Wang C (2018) A critical review of cathodes for rechargeable Mg batteries. Chem Soc Rev 47:8804–8841

    Article  CAS  PubMed  Google Scholar 

  14. Wang D, Gao X, Chen Y, Jin L, Kuss C, Bruce PG (2018) Plating and stripping calcium in an organic electrolyte. Nat Mater 17:16–20

    Article  CAS  PubMed  Google Scholar 

  15. Ponrouch A, Frontera C, Barde F, Palacin MR (2016) Towards a calcium-based rechargeable battery. Nat Mater 15:169–172

    Article  CAS  PubMed  Google Scholar 

  16. Lin MC, Gong M, Lu B, Wu Y, Wang DY, Guan M, Angell M, Chen C, Yang J, Hwang BJ, Dai H (2015) An ultrafast rechargeable aluminium-ion battery. Nature 520:325–328

    Article  PubMed  CAS  Google Scholar 

  17. Son SB, Gao T, Harvey SP, Steirer KX, Stokes A, Norman A, Wang C, Cresce A, Xu K, Ban C (2018) An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nat Chem 10:532–539

    Article  CAS  PubMed  Google Scholar 

  18. Zhao-Karger Z, Gil Bardaji ME, Fuhr O, Fichtner M (2017) A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries. J Mater Chem A 5:10815–10820

    Article  CAS  Google Scholar 

  19. Muldoon J, Bucur CB, Gregory T (2014) Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev 114:11683–11720

    Article  CAS  PubMed  Google Scholar 

  20. Kong L, Yan C, Huang J-Q, Zhao M-Q, Titirici M-M, Xiang R, Zhang Q (2018) A review of advanced energy materials for magnesium-sulfur batteries. Energy Environ Mater 1:100–112

    Article  CAS  Google Scholar 

  21. Zhang D, Fu J, Wang Z, Wang L, Corsi JS, Detsi E (2020) Perspective—reversible magnesium storage in silicon: an ongoing challenge. J Electrochem Soc 167:050514

    Article  CAS  Google Scholar 

  22. Park J, Xu ZL, Kang K (2020) Solvated ion intercalation in graphite: sodium and beyond. Front Chem 8:432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1:16013

    Article  CAS  Google Scholar 

  24. Xu J, Dou Y, Wei Z, Ma J, Deng Y, Li Y, Liu H, Dou S (2017) Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Adv Sci 4:1700146

    Article  CAS  Google Scholar 

  25. Cho Y, Kim J, Elabd A, Choi S, Park K, Kwon TW, Lee J, Char K, Coskun A, Choi JW (2019) A pyrene-poly(acrylic acid)-polyrotaxane supramolecular binder network for high-performance silicon negative electrodes. Adv Mater 31:e1905048

    Article  PubMed  CAS  Google Scholar 

  26. Xing Q, Yates K, Vogt C, Qian Z, Frost MC, Zhao F (2014) Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci Rep 4:4706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wang N, NuLi Y, Su S, Yang J, Wang J (2017) Effects of binders on the electrochemical performance of rechargeable magnesium batteries. J Power Sources 341:219–229

    Article  CAS  Google Scholar 

  28. Zou F, Manthiram A (2020) A review of the design of advanced binders for high-performance batteries. Adv Energy Mater 10:2002508

    Article  CAS  Google Scholar 

  29. Gurikov P, Smirnova I (2018) Non-conventional methods for gelation of alginate. Gels 4:14

    Article  PubMed Central  CAS  Google Scholar 

  30. He X, Liu Y, Li H, Li H (2016) Single-stranded structure of alginate and its conformation evolvement after an interaction with calcium ions as revealed by electron microscopy. RSC Adv 6:114779–114782

    Article  CAS  Google Scholar 

  31. Kim J, Park K, Cho Y, Shin H, Kim S, Char K, Choi JW (2021) Zn(2+)-imidazole coordination crosslinks for elastic polymeric binders in high-capacity silicon electrodes. Adv Sci 8:2004290

    Article  CAS  Google Scholar 

  32. Yoon J, Oh DX, Jo C, Lee J, Hwang DS (2014) Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking. Phys Chem Chem Phys 16:25628–25635

    Article  CAS  PubMed  Google Scholar 

  33. Sharratt WN, Lopez CG, Sarkis M, Tyagi G, O’Connell R, Rogers SE, Cabral JT (2021) Ionotropic gelation fronts in sodium carboxymethyl cellulose for hydrogel particle formation. Gels 7:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gabrielli V, Baretta R, Pilot R, Ferrarini A, Frasconi M (2022) Insights into the gelation mechanism of metal-coordinated hydrogels by paramagnetic NMR spectroscopy and molecular dynamics. Macromolecules 55:450–461

    Article  CAS  Google Scholar 

  35. Yi X, Xu Z, Liu Y, Guo X, Ou M, Xu X (2017) Highly efficient removal of uranium(vi) from wastewater by polyacrylic acid hydrogels. RSC Adv 7:6278–6287

    Article  CAS  Google Scholar 

  36. Dugas R, Forero-Saboya JD, Ponrouch A (2019) Methods and protocols for reliable electrochemical testing in post-Li batteries (Na, K, Mg, and Ca). Chem Mater 31:8613–8628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu X, Elia GA, Passerini S (2020) Evaluation of counter and reference electrodes for the investigation of Ca battery materials. J Power Sources Adv 2:100008

    Article  Google Scholar 

  38. Policastro S, Anderson R, Hangarter C (2021) Analysis of galvanic corrosion current between an aluminum alloy and stainless-steel exposed to an equilibrated droplet electrolyte. J Electrochem Soc 168:041507

    Article  CAS  Google Scholar 

  39. Ma C, Zhao X, Kang L, Wang KX, Chen JS, Zhang W, Liu J (2018) Non-conjugated dicarboxylate anode materials for electrochemical cells. Angew Chem Int Ed 57:8865–8870

    Article  CAS  Google Scholar 

  40. Zhang X, Pei Z, Wang C, Yuan Z, Wei L, Pan Y, Mahmood A, Shao Q, Chen Y (2019) Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics. Small 15:e1903817

    Article  PubMed  CAS  Google Scholar 

  41. Zhu Z (2016) Effects of various binders on supercapacitor performances. Int J Electrochem Sci 11:8270–8279

    Article  CAS  Google Scholar 

  42. Abbas Q, Pajak D, Frąckowiak E, Béguin F (2014) Effect of binder on the performance of carbon/carbon symmetric capacitors in salt aqueous electrolyte. Electrochim Acta 140:132–138

    Article  CAS  Google Scholar 

  43. Canepa P, Gautam GS, Malik R, Jayaraman S, Rong Z, Zavadil KR, Persson K, Ceder G (2015) Understanding the initial stages of reversible Mg deposition and stripping in inorganic nonaqueous electrolytes. Chem Mater 27:3317–3325

    Article  CAS  Google Scholar 

  44. Park J, Xu ZL, Yoon G, Park SK, Wang J, Hyun H, Park H, Lim J, Ko YJ, Yun YS, Kang K (2020) Stable and high-power calcium-ion batteries enabled by calcium intercalation into graphite. Adv Mater 32:e1904411

    Article  PubMed  CAS  Google Scholar 

  45. Xu Z-L, Yoon G, Park K-Y, Park H, Tamwattana O, Joo Kim S, Seong WM, Kang K (2019) Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries. Nat Commun 10:2598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

The authors received financial support from National Research Foundation of Korea grants (NRF-2020M3H4A3081874 and NRF-2021M3H4A3A02086210) and generous support from the Institute of Engineering Research (IOER) and the Research Institute of Advanced Materials (RIAM) at Seoul National University. This work was also supported by Shell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jang Wook Choi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

For the special issue dedicated to the 70th birthday of Doron Aurbach.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1222 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Baek, M., Park, K. et al. Effect of ionotropic gelation of COOH-functionalized polymeric binders in multivalent ion batteries. J Solid State Electrochem 26, 1969–1980 (2022). https://doi.org/10.1007/s10008-022-05256-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05256-1

Keywords

Navigation