Skip to main content
Log in

Modification of solid electrolyte interphase on deposited lithium metal by large separation between the electrodes in ether-based electrolytes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A thorough understanding of the lithium deposition behavior will facilitate the commercialization of lithium metal anodes. Despite enormous effort, an understanding of the lithium deposition behavior and surface film formation remains a significant challenge. A fundamental investigation of lithium deposition behavior as a function of separation between the counter electrode and the working electrode (2 mm) has been conducted for ether-based electrolytes. The effect of distance is compared with a conventional coin cell with a narrow gap between the electrodes (25 µm). The investigation reveals that lithium deposition in the two cells generates different chemical compositions of solid electrolyte interphase (SEI) on deposited lithium although the morphology of lithium deposition is similar. In the coin cell, a SEI containing a diverse mixture of compounds including LiF, Li2CO3, lithium alkyl carbonates, and Li2O is generated upon deposition of lithium. However, in 2 mm separated cell, the deposited lithium has an SEI dominated by LiF. It is suggested that the large separation between the electrodes suppresses an interaction of the highly concentrated lithium ions released from the counter electrode, which results in different SEI composition compared with the coin cell. The fundamental findings of this work provide insight for further understanding of the correlation between lithium deposition behavior and electrode separation in ether-based electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Paul PP, McShane EJ, Colclasure AM, Balsara N, Brown DE, Cao C et al (2021) A review of existing and emerging methods for lithium detection and characterization in Li-ion and Li-metal batteries. Adv Energy Mater 11(17):2100372. https://doi.org/10.1002/aenm.202100372

    Article  CAS  Google Scholar 

  2. Zheng J, Kim MS, Tu Z, Choudhury S, Tang T, Archer LA (2020) Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chem Soc Rev 49(9):2701–2750. https://doi.org/10.1039/c9cs00883g

    Article  CAS  PubMed  Google Scholar 

  3. Jin D, Park J, Ryou M-H, Lee YM (2020) Structure-controlled Li metal electrodes for post-Li-ion batteries: recent progress and perspectives. Adv Mater Interfaces 7(8):1902113. https://doi.org/10.1002/admi.201902113

    Article  CAS  Google Scholar 

  4. Scrosati B (2011) History of lithium batteries. J Solid State Electrochem 15(7):1623–1630. https://doi.org/10.1007/s10008-011-1386-8

    Article  CAS  Google Scholar 

  5. Aurbach D, Zinigrad E, Cohen Y, Teller H (2002) A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148(3):405–416. https://doi.org/10.1016/S0167-2738(02)00080-2

    Article  CAS  Google Scholar 

  6. Horstmann B, Shi J, Amine R, Werres M, He X, Jia H et al (2021) Strategies towards enabling lithium metal in batteries: interphases and electrodes. Energy Environ Sci 14(10):5289–5314. https://doi.org/10.1039/D1EE00767J

    Article  CAS  Google Scholar 

  7. Placke T, Kloepsch R, Dühnen S, Winter M (2017) Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J Solid State Electrochem 21(7):1939–1964. https://doi.org/10.1007/s10008-017-3610-7

    Article  CAS  Google Scholar 

  8. Li G, Archer LA, Koch DL (2019) Electroconvection in a viscoelastic electrolyte. Phys Rev Lett 122(12):124501. https://doi.org/10.1103/PhysRevLett.122.124501

    Article  CAS  PubMed  Google Scholar 

  9. Xiao J (2019) How lithium dendrites form in liquid batteries. Science 366(6464):426–427. https://doi.org/10.1126/science.aay8672

    Article  CAS  PubMed  Google Scholar 

  10. Brown ZL, Jurng S, Nguyen CC, Lucht BL (2018) Effect of fluoroethylene carbonate electrolytes on the nanostructure of the solid electrolyte interphase and performance of lithium metal anodes. ACS Appl Energy Mater 1(7):3057–3062. https://doi.org/10.1021/acsaem.8b00705

    Article  CAS  Google Scholar 

  11. Chae OB, Adiraju VAK, Lucht BL (2021) Lithium cyano tris(2,2,2-trifluoroethyl) borate as a multifunctional electrolyte additive for high-performance lithium metal batteries. ACS Energy Lett 6:3851–3857. https://doi.org/10.1021/acsenergylett.1c01999

    Article  CAS  Google Scholar 

  12. Markevich E, Salitra G, Aurbach D (2017) Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced Li-ion batteries. ACS Energy Lett 2(6):1337–1345. https://doi.org/10.1021/acsenergylett.7b00163

    Article  CAS  Google Scholar 

  13. Yoon I, Jurng S, Abraham DP, Lucht BL, Guduru PR (2020) Measurement of mechanical and fracture properties of solid electrolyte interphase on lithium metal anodes in lithium ion batteries. Energy Storage Mater 25:296–304. https://doi.org/10.1016/j.ensm.2019.10.009

    Article  Google Scholar 

  14. Ishikawa K, Ito Y, Harada S, Tagawa M, Ujihara T (2017) Crystal orientation dependence of precipitate structure of electrodeposited Li metal on Cu current collectors. Cryst Growth Des 17(5):2379–2385. https://doi.org/10.1021/acs.cgd.6b01710

    Article  CAS  Google Scholar 

  15. Kim JY, Chae OB, Wu M, Lim E, Kim G, Hong YJ et al (2021) Extraordinary dendrite-free Li deposition on highly uniform facet wrinkled Cu substrates in carbonate electrolytes. Nano Energy 82:105736. https://doi.org/10.1016/j.nanoen.2020.105736

    Article  CAS  Google Scholar 

  16. Brissot C, Rosso M, Chazalviel JN, Lascaud S (1999) Dendritic growth mechanisms in lithium/polymer cells. J Power Sources 81–82:925–929. https://doi.org/10.1016/S0378-7753(98)00242-0

    Article  Google Scholar 

  17. Jana A, Woo SI, Vikrant KSN, García RE (2019) Electrochemomechanics of lithium dendrite growth. Energy Environ Sci 12(12):3595–3607. https://doi.org/10.1039/C9EE01864F

    Article  CAS  Google Scholar 

  18. Wang J, Huang W, Pei A, Li Y, Shi F, Yu X et al (2019) Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat Energy 4(8):664–670. https://doi.org/10.1038/s41560-019-0413-3

    Article  CAS  Google Scholar 

  19. Yan K, Wang J, Zhao S, Zhou D, Sun B, Cui Y et al (2019) Temperature-dependent nucleation and growth of dendrite-free lithium metal anodes. Angew Chem 58(33):11364–11368. https://doi.org/10.1002/anie.201905251

    Article  CAS  Google Scholar 

  20. Barai P, Higa K, Srinivasan V (2016) Effect of initial state of lithium on the propensity for dendrite formation: a theoretical study. J Electrochem Soc 164(2):A180–A189. https://doi.org/10.1149/2.0661702jes

    Article  CAS  Google Scholar 

  21. Harrison KL, Zavadil KR, Hahn NT, Meng X, Elam JW, Leenheer A et al (2017) Lithium self-discharge and its prevention: direct visualization through in situ electrochemical scanning transmission electron microscopy. ACS Nano 11(11):11194–11205. https://doi.org/10.1021/acsnano.7b05513

    Article  CAS  PubMed  Google Scholar 

  22. Yin X, Tang W, Jung ID, Phua KC, Adams S, Lee SW et al (2018) Insights into morphological evolution and cycling behaviour of lithium metal anode under mechanical pressure. Nano Energy 50:659–664. https://doi.org/10.1016/j.nanoen.2018.06.003

    Article  CAS  Google Scholar 

  23. Chae OB, Kim J, Lucht BL (2022) Modification of lithium electrodeposition behavior by variation of electrode distance. J Power Sources 532:231338. https://doi.org/10.1016/j.jpowsour.2022.231338

    Article  CAS  Google Scholar 

  24. Yang CP, Yin YX, Zhang SF, Li NW, Guo YG (2015) Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun 6:8058. https://doi.org/10.1038/ncomms9058

    Article  CAS  PubMed  Google Scholar 

  25. Pei A, Zheng G, Shi F, Li Y, Cui Y (2017) Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett 17(2):1132–1139. https://doi.org/10.1021/acs.nanolett.6b04755

    Article  CAS  PubMed  Google Scholar 

  26. Liu Y, Lin D, Li Y, Chen G, Pei A, Nix O et al (2018) Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat Commun 9(1):3656. https://doi.org/10.1038/s41467-018-06077-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li W, Yao H, Yan K, Zheng G, Liang Z, Chiang Y-M et al (2015) The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat Commun 6(1):7436. https://doi.org/10.1038/ncomms8436

    Article  CAS  PubMed  Google Scholar 

  28. Hayamizu K (2012) Temperature dependence of self-diffusion coefficients of ions and solvents in ethylene carbonate, propylene carbonate, and diethyl carbonate single solutions and ethylene carbonate + diethyl carbonate binary solutions of LiPF6 studied by NMR. J Chem Eng Data 57(7):2012–2017. https://doi.org/10.1021/je3003089

    Article  CAS  Google Scholar 

  29. Liu S, Zhang Q, Wang X, Xu M, Li W, Lucht BL (2020) LiFSI and LiDFBOP dual-salt electrolyte reinforces the solid electrolyte interphase on a lithium metal anode. ACS Appl Mater Interfaces 12(30):33719–33728. https://doi.org/10.1021/acsami.0c08094

    Article  CAS  PubMed  Google Scholar 

  30. Jurng S, Brown ZL, Kim J, Lucht BL (2018) Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy Environ Sci 11(9):2600–2608. https://doi.org/10.1039/C8EE00364E

    Article  CAS  Google Scholar 

  31. Kanamura K, Tamura H, Shiraishi S, Zi T (1995) XPS analysis of lithium surfaces following immersion in various solvents containing LiBF4. J Electrochem Soc 142(2):340–347. https://doi.org/10.1149/1.2044000

    Article  CAS  Google Scholar 

Download references

Funding

This material is based upon work supported by the U.S. Department of Energy, Office of Science, EPSCoR National Laboratory Partnership Program, under Award Number DE-SC0021392.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett L. Lucht.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, O.B., Yeddala, M. & Lucht, B.L. Modification of solid electrolyte interphase on deposited lithium metal by large separation between the electrodes in ether-based electrolytes. J Solid State Electrochem 26, 2005–2011 (2022). https://doi.org/10.1007/s10008-022-05189-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05189-9

Keywords

Navigation