Skip to main content

Advertisement

Log in

Water-stable high lithium-ion conducting Li1.4Al0.4Ge0.2Ti1.4(PO4)3-TiO2-LiCl•H2O–epoxy resin composite film with high mechanical strength as separator for Li-air batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Aqueous rechargeable lithium-air batteries are candidates for next-generation high energy and power density batteries. The key material of this type battery is the separator between the lithium anode and aqueous catholyte. Doped NASICON-type lithium conducting solid electrolytes of LiTi2(PO4)3 have potential application as the separator for aqueous lithium-air batteries because of their high lithium-ion conductivity and stability in water. In this study, water stable and water impermeable tape-cast films of Li1.4Al0.4Ge0.2Ti1.4(PO4)3-TiO2-LiCl•H2O-epoxy resin were prepared. The tape-cast film of Li1+0.4Al0.4Ge0.2Ti1.4(PO4)3–10 wt.% TiO2-3 wt.% LiCl•H2O-2 wt.% epoxy resin showed a three-point bending strength of 158 N mm−2 and a lithium-ion conductivity of 8.7 × 10−4 S cm−1 at 25 °C. The films were stable in a LiCl saturated aqueous solution and water impermeable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Breser D, Hosoi K, Howell D, Li H, Zaisel H, Amine K, Passeini S (2018) Perspective of automotive battery R&D in China, Germany, Japan, and the USA. J Power Sources 382:176–178

    Article  Google Scholar 

  2. Tian Y, Zeng C, Rutt A, Shi T, Kim H, Wang J, Koettgen J, Sun Y, Ouyang B, Chen T, Lun Z, Rong Z, Persson K, Ceder C (2021) Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem Rev 121:1623–1669

    Article  CAS  Google Scholar 

  3. Bruce PG, Freunberge SA, Hardwick LJ, Tarascon J-M (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19–29

    Article  CAS  Google Scholar 

  4. Chen Y, Wen K, Chen T, Zhang X, Armand M, Chen S (2020) Recent progress in all-solid-state lithium batteries: the emerging strategies for advanced electrolyte and their interface. Energy Storage Mater 31:401–433

    Article  Google Scholar 

  5. Yamamoto O (2013) In Imanishi N, Luntz A C, Bruce P (ed) The lithium air battery: fundamentals. Springer , New York

  6. Bachman JC, Muy S, Grimaud A, Chang H-H, Pour N, Lus SF, Paschos O, Mglia P, Lupart S, Lamp P, Giordano L, Shao-Horn Y (2016) Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116:140–162

    Article  CAS  Google Scholar 

  7. Shimonishi Y, Toda A, Zhang T, Hirano A, Imanishi N, Yamamoto O, Takeda Y (2011) Synthesis of garnet-type Li7-xLa3Zr2O12-1/2x and its stability in aqueous solutions. Solid State Ionics 183:48–53

    Article  CAS  Google Scholar 

  8. Shimonishi Y, Zhang T, Imanishi N, Im D, Lee DJ, Hirano A, Takeda Y, Yamamoto O, Sammes N (2011) A study on lithium/air secondary batteries-stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions. J Power Sources 196:5128–5132

    Article  CAS  Google Scholar 

  9. Imanishi N, Hasegawa S, Zhang T, Hirano A, Takeda Y, Yamamoto O (2008) Lithium anode for lithium-air secondary batteries. J Power Sources 185:1392–1397

    Article  CAS  Google Scholar 

  10. Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G (1990) Ion conductivity of solid electrolytes based on lithium titanium phosphate. J Electrochem Soc 137:1023–1027

    Article  CAS  Google Scholar 

  11. Zhang P, Wang H, Lee Y-G, Matsui M, Takeda Y, Yamamoto O, Imanishi N (2015) Tape-cast water-stable NASICON-type high lithium ion conducting solid electrolyte films for aqueous lithium-air batteries. J Electrochem Soc 162:A1265–A1271

    Article  CAS  Google Scholar 

  12. Kyono N, Bai F, Nemori H, Minami H, Mori D, Takeda Y, Yamamoto O, Imanishi N (2018) Lithium-ion conducing solid electrolytes of Li1.4Al0.4Ge0.2Ti1.4(PO4)3 and MOx (M=Al, Ti, and Zr) composite. Solid State Ionics 324:114–127

    Article  CAS  Google Scholar 

  13. Takahashi K, Ohmura J, Im J, Jee DJ, Zhang T, Imanishi N, Hirano A, Phillipps MB, Takeda Y, Yamamoto O (2012) A super high lithium ion conducting solid electrolyte of grain boundary modified Li1.4Ti1.6Al0.4(PO4)3. J Electrochem Soc 159:A342–A348

    Article  CAS  Google Scholar 

  14. Lu Y, Goodenough J, Kim HY (2011) Aqueous cathode for next-generation alkali-ion batteries. J Am Chem Soc 133:5750–5756

    Google Scholar 

  15. Morita Y, Watanabe S, Mori D, Takeda T, Yamamoto O, Imanishi N (2018) High energy density rechargeable lithium-nickel chloride aqueous solution batteries. ACS Omega 3:5558–5562

    Article  CAS  Google Scholar 

  16. https://www.ohara-inco.jp/licgc.ago/

  17. Ohnishi H, Kawanami T, Nakahira A, Nihara K (1990) Microstructure and mechanical properties of mullite ceramics. J Ceram Soc Jpn 96:541–547

    Article  Google Scholar 

  18. Bruce PG, West AR (1983) The A-C conductivity of polycrystalline LISICON, Li2+2xZn1-xGeO4 and a model for intergranular constriction resistance. J Electrochem Soc 130:662–669

    Article  CAS  Google Scholar 

  19. Ginnings DC, Phipps TE (1930) Temperature-conductivity curves of solid salts III. Halides of lithium. J Am Chem Soc 52:1340–1345

    Article  CAS  Google Scholar 

  20. Soga S, Bai F, Zhang T, Kakimoto K, Mori D, Taminato S, Takeda Y, Yamamoto O, Imanishi N (2020) Ambient air operation rechargeable lithium-air battery with acetic acid catholyte. J. Electrochem. Soc., 167 (2020) 090522

  21. Minami H, Izumi H, Hasegawa T, Bai F, Mori D, Taminato S, Takeda Y, Yamamoto O, Imanishi N (2021) Aqueous lithium-air batteries with high power density at room temperature under air atmosphere. J. Energy Power Tech. 3: issue 3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Yamamoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakimoto, K., Bai, F., Mori, D. et al. Water-stable high lithium-ion conducting Li1.4Al0.4Ge0.2Ti1.4(PO4)3-TiO2-LiCl•H2O–epoxy resin composite film with high mechanical strength as separator for Li-air batteries. J Solid State Electrochem 26, 1349–1357 (2022). https://doi.org/10.1007/s10008-022-05173-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05173-3

Keywords

Navigation