Skip to main content

Advertisement

Log in

An annular porous column (5) aromatics as anode material for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A column (5) aromatic compound was synthesized and its energy storage behaviors are investigated. The obtained column (5) aromatics is mainly disordered but still contains ordered structures with lattice spacing of 0.287 nm. Such regular layered spacing and molecular-scale voids are very beneficial for the embedding and removal of lithium ions. As a result, the initial charging capacity of column (5) aromatics is only 184 mAh g−1 at current density of 400 mA g−1; as the cycle increased, the charge capacity increased rapidly to 1305 mAh g−1 after 600 cycles. Subsequently, the capacity continued to grow slowly and finally stabilized, when cycling increases to 800 cycles, the capacity is up to 1611 mAh g−1, which is close to its theoretical specific capacity. Meanwhile, a superior rate performance is also observed, at current densities of 0.1, 0.2, 0.5, 1.0, 2.0, and 4.0 A/g, the capacities of column (5) aromatics are 2142, 1951, 1679, 1320, 929, and 484 mAh g−1, respectively. The SEM images show that as the cycle proceeds, the size of the column aromatics particles is significantly reduced and forms a porous and loose morphological structure, which increases the exposed active points, decreases the impedance of the electrode, and gradually increases the cycling capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li M, Lu J, Chen Z, Amine K (2018) 30 Years of lithium-ion batteries. Adv Mater 30(33):1800561

    Article  Google Scholar 

  2. Kim T, Song W, Son DY, One LK, Qi Y (2019) Lithium-ion batteries: outlook on present, future, and hybridized technologies. J Mater Chem A 7(7):2942–2964

    Article  CAS  Google Scholar 

  3. Chen Y, Wang CL (2020) Designing high performance organic batteries. Acc Chem Res 53(11):2636–2647

    Article  CAS  Google Scholar 

  4. Li YT, Chen X, Dolocan A, Cui ZM, Xin S, Xue LG, Xu HH, Park K, Goodneough JB (2018) Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J Am Chem Soc 140(20):6448–6455

    Article  CAS  Google Scholar 

  5. Lin J, Sun YH, Lin XM (2022) Metal-organic framework-derived LiFePO4 cathode encapsulated in O,F-codoped carbon matrix towards superior lithium storage. Nano Energy 91:106655

  6. Zhao JJ, Zhou MM, Chen J, Tao LH, Zhang Q, Li ZF, Zhong SW, Fu HK, Wang H, Wu LJ (2021) Phthalocyanine-based covalent organic frameworks as novel anode materials for high-performance lithium-ion/sodium-ion batteries. Chem Eng J 425:131630

  7. Xiao ZE, Chen J, Liu J, Liang TX, XU Y, Zhu CJ, Zhong SW (2019) Microcrystalline copper foil as a high performance collector for lithium-ion batteries. J Power Sources 438:226973

  8. Lv W, Ou C, Chen J, Zhang Q, Zhong SW (2021) High performance of low-temperature electrolyte for lithium-ion batteries using mixed additives. Chem Eng J 418:129400

  9. Gao L, Li JX, Ju JG, Wang LY, Yan J, Cheng BW, Kang WM, Deng NP, Li YT (2020) Designing of root-soil-like polyethylene oxide-based composite electrolyte for dendrite-free and long-cycling all-solid-state lithium metal batteries. Chem Eng J 389:124478

  10. Wang C (2020) Weak intermolecular interactions for strengthening organic batteries. Energy Environ Mater 3(4):441–452

    Article  Google Scholar 

  11. Zhou LM, Zhang K, Hu Z, Tao ZL, Mai LQ, Kang YM, Chen CSL, J, (2018) Recent developments on and prospects for electrode materials with hierarchical structures for lithium-ion batteries. Adv Energy Mater 8(6):1701415

    Article  Google Scholar 

  12. Chenna Krishna Reddy R, Lin J, Chen YY, Zeng CH, Lin XM, Cai YP, Su CY (2020) Progress of nanostructured metal oxides derived from metal–organic frameworks as anode materials for lithium-ion batteries. Coordination Chemistry Reviews 420:213434

  13. Liao B, Li H, Xu M, Xing L, Liao Y, Ren X, Fan W, YU L, Li W, (2018) Designing low impedance interface films simultaneously on anode and cathode for high energy batteries. Adv Energy Mater 8(22):1800802

    Article  Google Scholar 

  14. Tang M, Jiang C, Liu S, Li X, Chen Y, Wu Y, Ma J, Wang C (2020) Small amount COFs enhancing storage of large anions. Energy Storage Mater 27:35–42

    Article  Google Scholar 

  15. Li H, Su Y, Sun W, Wang Y (2016) Carbon nanotubes rooted in porous ternary metal sulfide@N/S-doped carbon dodecahedron: bimetal-organic-frameworks derivation and electrochemical application for high-capacity and long-life lithium-ion batteries. Adv Funct Mater 26(45):8345–8353

    Article  CAS  Google Scholar 

  16. Lin TQ, Chen IW, Liu FX, Yang C, Bi H, Xu F (2015) Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350(6267):1508–1513

    Article  CAS  Google Scholar 

  17. Zhen MB, Tang H, Li LL, Hu Q, Zhang L, Pang XHG, H, (2018) Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv Sci 5(3):1700592–1700616

    Article  Google Scholar 

  18. Chen Y, Zhuo S, Li Z, Wang C (2020) Redox polymers for rechargeable metal-ion batteries. Energy Chem 2:100030

  19. Lin J, Zeng CH, Xu J, Zeb A, Lin XM, Hu L, Li K, Xu X (2021) Oxygen vacancy engineering of carbon-encapsulated (Co,Mn)(Co,Mn)2O4 from metal-organic framework towards boosted lithium storage. 425:130661

  20. Ji WW, Mei YM, Yang M, Liu HL, Wang SR, Shan ZQ, Ding F, Liu X, Gao X, Li XG (2019) The core-shell mesoporous titanium dioxide with in-situ nitrogen doped carbon as the anode for high performance lithium-ion battery. J Alloy Comp 806:946–952

    Article  CAS  Google Scholar 

  21. Zhang Z, Xu P, Zhang H, Shen A, Zhao YQ (2019) Flexible three-dimensional titanium-dioxide-based hollow nanoflower arrays for advanced lithium-ion battery anodes. ACS Appl Energy Mater 2(8):5744–5752

    Article  CAS  Google Scholar 

  22. Liu Y, Bai Q, Nolan AM, Zhou YN, Wang YG, Mo YF, Xia YY (2019) Lithium ion storage in lithium titanium germanate. Nano Energy 66:104094

  23. Qin J, He CN, Zhao NQ, Wang ZY, Shi CS, Liu EZ, Li JJ (2014) Graphene networks anchored with Sn@Graphene as lithium ion battery anode. ACS Nano 8(2):1728–1738

    Article  CAS  Google Scholar 

  24. Ren WF, Zhou Y, Li JT, Huang L, Sun SG (2019) Si anode for next-generation lithium-ion battery. Curr Opin Electrochem 18:46–54

    Article  CAS  Google Scholar 

  25. Peng KQ, Jie JS, Zhang WJ, Lee ST (2008) Silicon nanowires for rechargeable lithium-ion battery anodes. App Phys Lett 93(3):033105

  26. Wu F, Yuan YX, Cheng XB, Bai Y, Li Y, Wu C, Zhang Q (2018) Perspectives for restraining harsh lithium dendrite growth: towards robust lithium metal anodes. Energy Stor Mater 15:148–170

    Article  Google Scholar 

  27. Shi QT, Zhou JH, Ullah S, Yang XQ, Tokarska K, Trzebicka B, Ta HQ, Rummeli MH (2021) A review of recent developments in Si/C composite materials for Li-ion batteries. Energy Stor Mater 34:735–754

    Article  Google Scholar 

  28. Li P, Kim H, Myung ST, Sun YK (2021) Diverting exploration of silicon anode into practical way: a review focused on silicon-graphite composite for lithium ion batteries. Energy Stor Mater 35:550–576

    Article  Google Scholar 

  29. Zhang JJ, Yu AS (2015) Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Sci Bull 60(9):823–838

    Article  CAS  Google Scholar 

  30. Fang S, Bresser D, Passerini S (2019) Transition metal oxide anodes for electrochemical energy storage in lithium-and sodium-ion batteries. Adv Energy Mater 10(1):1902485

    Article  Google Scholar 

  31. Stephenson T, Li Z, Olsen B, Mitlin D (2014) Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energ Environ Sci 7(1):209–231

    Article  CAS  Google Scholar 

  32. Taberna L, Mitra S, Poizot P, Simon P, Tarascon JM (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mate 5(7):567–573

    Article  CAS  Google Scholar 

  33. Schon TB, McAllister BT, Li PF, Seferos DS (2016) The rise of organic electrode materials for energy storage. Chem Soc Rev 45(22):6345–6404

    Article  CAS  Google Scholar 

  34. Amin K, Meng QH, Ahmad A, Cheng M, Zhang M, Mao LJ, Lu K, Wei ZX (2016) A carbonyl compound-based flexible cathode with superior rate performance and cyclic stability for flexible lithium-ion batteries. Adv Mater 30(4):1703868

    Article  Google Scholar 

  35. Lu GX, Zheng JH, Jin CB, Yan TR, Zhang L, Nai JW, Wang Y, Liu YJ, Liu TF, Tao XY (2021) Lithiated aromatic biopolymer as high-performance organic anodes for lithium-ion storage. Chem Eng J 409:127454

  36. Jin CX, Nai JW, Sheng OW, Yuan HD, Zhang WK, Tao XY (2021) Lou XW (David). Biomass-based materials for green lithium secondary batteries 14:1326–1379

    CAS  Google Scholar 

  37. Yuan HD, Liu TF, Liu YJ, Nai JW, Wang Y, Zhang WK, Tao XY (2019) A review of biomass materials for advanced lithium-sulfur batteries. Chem Sci 10:7484–7495

    Article  CAS  Google Scholar 

  38. Iordache A, Maurel V, Mouesca JM, Pecaut J, Dubois L, Gutel T (2014) Monothioanthraquinone as an organic active material for greener lithium batteries. J Power Sources 267:553–559

    Article  CAS  Google Scholar 

  39. Suga T, Konishi H, Nishide H (2007) Photocrosslinked nitroxide polymer cathode-active materials for application in an organic-based paper battery. Chem Comm 17:1730–1732

    Article  Google Scholar 

  40. Wang HG, Yuan S, Ma DL, Huang XL, Meng FL, Zhang XB (2014) Tailored aromatic carbonyl derivative polyimides for high-power and long-cycle sodium-organic batteries. Adv Energy Mater 4(7):1301651

    Article  Google Scholar 

  41. Dong C, Xu L (2017) Cobalt- and cadmium-based metal-organic frameworks as high-performance anodes for sodium ion batteries and lithium ion batteries. ACS Appl Mater Interfaces 9(8):7160–7168

    Article  CAS  Google Scholar 

  42. Qin H, Song ZP, Zhan H, Zhou YH (2014) Aqueous rechargeable alkali-ion batteries with polyimide anode. J Power Sources 249:367–372

    Article  CAS  Google Scholar 

  43. Li H, Duan Z, Yang Y, Xu F, Chen M, Liang TX, Bai Y, Li RQ (2020) Regulable aggregation-induced emission supramolecular polymer and gel based on self-sorting assembly. Macromolecules 53(11):4255–4263

    Article  CAS  Google Scholar 

  44. Li H, Yang Y, Xu F, Liang TX, Wen HR, Tian W (2019) Pillararene-based supramolecular polymers Chem Comm 55(3):271–285

    CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (21762019), China Postdoctoral Special Grant Program (2021T140138), the Program of Qingjiang Excellent Young Talents in Jiangxi University of Science and Technology (JXUSTQJBJ2019003), Guangdong YangFan Innovative & Entepreneurial Research Team Program (2016YT03N101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 346 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, S., Xu, Y., Li, Z. et al. An annular porous column (5) aromatics as anode material for lithium-ion batteries. J Solid State Electrochem 26, 1241–1249 (2022). https://doi.org/10.1007/s10008-022-05162-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05162-6

Keywords

Navigation