Skip to main content

Advertisement

Log in

Rational design of a BiFeWO6 nanostructure for supercapacitor applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Scientists are increasingly interested in improving electroactive technologies for supercapacitor applications, since energy storage devices have improved considerably. Herein, we design a hierarchical BiFeWO6 array network structure on carbon cloth for energy storage devices as a binder-free electrode material, as the internal resistance and the impedance of binders in energy storage systems induce poor performance of the designed material. The BiFeW@CC fabricated electrode gives a specific capacitance (Csp) of 1200 F g−1 at 2 A g−1, indicating good electrochemical activity with 82% retention of Csp after 5000 cycles. According to studies, the BiFeW@CC nanostructure is a potential candidate for use in high-energy supercapacitors. The remarkable performance of BiFeW@CC is due to its intriguing structural features, the conducting nature of Fe ions, and a binder-free electrode; this fascinating pseudocapacitor for industrial use exhibits exceptional electrochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

Data sharing is not applicable to this article as no data sets were generated during the present study.

References

  1. Lu D, Wang H, Zhao X, Kondamareddy KK, Ding J, Li C, Fang P (2017) Highly efficient visible-light-induced photoactivity of Z-scheme g-C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen. ACS Sustain Chem Eng 5:1436–1445

    Article  CAS  Google Scholar 

  2. He R, Zhou J, Fu H, Zhang S, Jiang C (2018) Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity. Appl Surf Sci 430:273–282

    Article  CAS  Google Scholar 

  3. Rehman MN, Munawar T, Nadeem MS, Mukhtar F, Maqbool A, Riaz M, Manzoor S, Ashiq MN, Iqbal F (2021) Facile synthesis and characterization of conducting polymer-metal oxide based core-shell PANI-Pr2O–NiO–Co3O4 nanocomposite: As electrode material for supercapacitor. Ceram Inter 47:18497–18509

    Article  CAS  Google Scholar 

  4. Rashid AR, Abid AG, Manzoor S, Mera A, Al-Muhimeed TI, AlObaid AA, Shah SN, Ashiq MN, Imran M, Haq MN (2021) Inductive effect in Mn-doped ZnO nanoribon arrays grown on Ni foam: A promising key for boosted capacitive and high specific energy supercapacitors. Ceram Inter 47:28338–28347

    Article  CAS  Google Scholar 

  5. Manzoor S, Ashiq MF, Usman M, Sadaqat M, Mahmood K, Munawar T, Iqbal F, Al-Anazy MM, Ashiq MN, Haq MN (2021) Development of excellent and novel flowery zirconia/cadmium sulfide nanohybrid electrode: For high performance electrochemical supercapacitor application. J Energy Storage 40:102718

    Article  Google Scholar 

  6. Yang Y, Okonkwo EG, Huang G, Xu S, Sun W, He Y (2021) On the sustainability of lithium ion battery industry–A review and perspective. Energy Storage Mater 36:186–212

    Article  Google Scholar 

  7. Hu Q, Yue Y, Shao H, Yang F, Wang J, Wang Y, Liu J (2021) Facile syntheses of perovskite type LaMO3 (M= Fe Co, Ni) nanofibers for high performance supercapacitor electrodes and lithium-ion battery anodes. J Alloys Compd 852:157002

    Article  CAS  Google Scholar 

  8. Mali V, Tripathi B (2021) Thermal and economic analysis of hybrid energy storage system based on lithium-ion battery and supercapacitor for electric vehicle application. Clean Technol Environ Policy 23:1135–1150

    Article  CAS  Google Scholar 

  9. Mohanty A, Jaihindh D, Fu Y-P, Senanayak SP, Mende LS, Ramadoss A (2021) An extensive review on three dimension architectural Metal-Organic Frameworks towards supercapacitor application. J Power Sources 488:229444

    Article  CAS  Google Scholar 

  10. Wang H, Niu H, Wang H, Wang W, JinX WH, Zhou H, Lin T (2021) Micro-meso porous structured carbon nanofibers with ultra-high surface area and large supercapacitor electrode capacitance. J Power Sources 482:228986

    Article  CAS  Google Scholar 

  11. Pokharel J, Gurung A, Baniya A, He W, Chen K, Pathak R, Lamsal BS, Ghimire N, Zhou Y (2021) MOF-derived hierarchical carbon network as an extremely-high-performance supercapacitor electrode. Electrochim Acta 394:139058

    Article  CAS  Google Scholar 

  12. Lee J (2021) Surface-engineered flexible fibrous supercapacitor electrode for improved electrochemical performance. Appl Surf Sci 539:148290

    Article  CAS  Google Scholar 

  13. Arvas MB, Gürsu H, Gencten M, Sahin Y (2021) Preparation of different heteroatom doped graphene oxide based electrodes by electrochemical method and their supercapacitor applications. J Energy Source 35:102328

    Google Scholar 

  14. Jiang Y, Li J, Jiang Z, Shi M, Sheng R, Liu Z, Zhang S, Cao Y, Wei T, Fan Z (2021) Large-surface-area activated carbon with high density by electrostatic densification for supercapacitor electrodes. Carbon 175:281–288

    Article  CAS  Google Scholar 

  15. Dahal B, Chhetri K, Muthurasu A, Mukhiya T, Tiwari AP, Gautam J, Lee JY, Chung DC, Kim HY (2021) Biaxial stretchability in high-performance, all-solid-state supercapacitor with a double-layer anode and a faradic cathode based on graphitic-2200 knitted carbon fiber. Adv Energy Mater 11:2002961

    Article  CAS  Google Scholar 

  16. Rathinamala I, Babu IM, William JJ, Muralidharan G, Prithivikumaran N (2021) Extra-Durable Hybrid Supercapacitor Based on Cobalt Sulfide and Carbon (MWCNT) Matrix Electrodes. J Energy Storage 34:102200

    Article  Google Scholar 

  17. Liu J, Deng X, Zhu S, Zhao N, Sha J, Ma L, He F (2021) Porous oxygen-doped NiCoP nanoneedles for high performance hybrid supercapacitor. Electrochim Acta 368:137528

    Article  CAS  Google Scholar 

  18. Sharma P, Minakshi M, Whale J, Jean-Fulcrand A, Garnweitner G (2021) Effect of the anionic counterpart: Molybdate vs. tungstate in energy storage for pseudo-capacitor applications. J Nanomater 11:580

    Article  CAS  Google Scholar 

  19. Aziz SB, Brza M, Hamsan H, Kadir M, Abdulwahid RT (2021) Electrochemical characteristics of solid state double-layer capacitor constructed from proton conducting chitosan-based polymer blend electrolytes. Polym 78:3149–3167

    CAS  Google Scholar 

  20. Li H, Wu J, Wang L, Liao Q, Niu X, Zhang D, Wang K (2022) A zinc ion hybrid capacitor based on sharpened pencil-like hierarchically porous carbon derived from metal–organic framework. Chem Eng J 428:131071

    Article  CAS  Google Scholar 

  21. Nayak P, Nayak SK, Satpathy B (2022) Structural, electro-chemical and conduction mechanism in spinel NiFe2O4/NFO supercapacitor electrode material. Mater Sci Semicond Process 143:106543

    Article  CAS  Google Scholar 

  22. Ding K, Chen J, Liu Y, Zhou L, Zhang D, Tian W, Sun Y, Pan J, Wang H (2022) Peony-shaped micron-sized NiO particles: their excellent electrochemical performances as anode materials of lithium ion batteries (LIBs) JSEL 1–12

  23. Abdah MAAM, Mokhtar M, Khoon LT, Sopian K, Dzulkurnain NA, Ahmad A, Sulaiman Y, Bella F, Su’ait MS (2021) Synthesis and electrochemical characterizations of poly (3, 4-ethylenedioxythiophene/manganese oxide coated on porous carbon nanofibers as a potential anode for lithium-ion batteries. Energy Rep 7:8677–8687

    Article  Google Scholar 

  24. Wang Y, Zhang L, Hou H, Xu W, Duan G, He S, Liu K, Jiang S (2021) Recent progress in carbon-based materials for supercapacitor electrodes: a review. J Mater Sci 56:173–200

    Article  CAS  Google Scholar 

  25. Kumar S, Saeed G, Zhu L, Hui KN, Kim NH, Lee JH (2021) 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review. Chem Eng J 403:126352

    Article  CAS  Google Scholar 

  26. Shakil R, Shaikh MN, Shah SS, Reaz AH, Roy CK, Chowdhury AN, Aziz MA (2021) Development of a Novel Bio-based Redox Electrolyte using Pivalic Acid and Ascorbic Acid for the Activated Carbon-based Supercapacitor Fabrication. Asian J Org Chem 10:2220–2230

    Article  CAS  Google Scholar 

  27. Nasrin K, Gokulnath S, Karnan M, Subramani K, Sathish M (2021) Redox-additives in aqueous, non-aqueous, and all-solid-state electrolytes for carbon-based supercapacitor: a mini-review. Energy amp Fuels 35:6465–6482

    Article  CAS  Google Scholar 

  28. Massaro A, Muñoz-García AB, Maddalena P, Bella F, Meligrana G, Gerbaldi C, Pavone MJNA (2020) First-principles study of Na insertion at TiO 2 anatase surfaces: new hints for Na-ion battery design. Nanoscale Adv 2:2745–2751

    Article  CAS  Google Scholar 

  29. Wang X, Yang C, Li J, Chen XA, Yang K, Yu X, Lin D, Zhang Q, Wang S, Wang J (2021) Insights of heteroatoms doping-enhanced bifunctionalities on carbon based energy storage and conversion. Adv Funct Mater 31:2009109

    Article  CAS  Google Scholar 

  30. Zhang F, Song G, Gandla D, Ein-Eli Y, Tan DQ (2021) Synergy of Oxygen Plasma and Al2O3 Atomic Layer Deposition on Improved Electrochemical Stability of Activated Carbon-Based Supercapacitor. Front Energy Res 9:124

    Google Scholar 

  31. Majumdar D, Ghosh S (2021) Recent advancements of copper oxide based nanomaterials for supercapacitor applications. J Energy Storage 34:101995

    Article  Google Scholar 

  32. Luangaramvej P, Dubas ST (2021) Two-step polyaniline loading in polyelectrolyte complex membranes for improved pseudo-capacitor electrodes. E-Polymers 21:194–199

    Article  CAS  Google Scholar 

  33. Wu J, Li Q, Shuck CE, Maleski K, Alshareef HN, Zhou J, Gogotsi Y, Huang L (2022) An aqueous 2.1 V pseudocapacitor with MXene and V-MnO2 electrodes. Nano Res 15:535–541

    Article  CAS  Google Scholar 

  34. Wang F, Cheong JY, He Q, Duan G, He S, Zhang L, Zhao Y, Kim LD, Jiang S (2021) Phosphorus-doped thick carbon electrode for high-energy density and long-life supercapacitors. J Chem Eng 414:128767

    Article  CAS  Google Scholar 

  35. Xing D, Lu L, The KS, Wan Z, Xie Y, Tang Y (2018) Highly flexible and ultra-thin Ni-plated carbon-fabric/polycarbonate film for enhanced electromagnetic interference shielding. Carbon 132:32–41

    Article  CAS  Google Scholar 

  36. Bella F, Muñoz-García AB, Meligrana G, Lamberti A, Destro M, Pavone M, Gerbaldi C (2017) Unveiling the controversial mechanism of reversible Na storage in TiO2 nanotube arrays: Amorphous versus anatase TiO2. Nano Res 10:2891–2903

    Article  CAS  Google Scholar 

  37. Luangaramvej P, Dubas ST (2021) Two-step polyaniline loading in polyelectrolyte complex membranes for improved pseudo-capacitor electrodes. e-Polymers 21:194–199

  38. Liu P, Sui Y, Wei F, Qi J, Meng Q, Ren Y, He Y (2019) Facile synthesis of CoNi 2 S 4 nanoparticles grown on carbon fiber cloth for supercapacitor application. J Mater Sci: Mater Electron 30:19077–19086

    CAS  Google Scholar 

  39. Wang J, Xiao G, Zhang T, Hao S, Jia Z, Li Y (2021) Fabrication of Co3O4/polyaniline-based carbon electrode for high-performance supercapacitor. J Alloys Compd 863:158071

    Article  CAS  Google Scholar 

  40. Chen K, Zhao S, Sun J, Zhou J, Wang Y, Tao K, Xiao X, Han L (2021) Enhanced capacitance performance by coupling 2D conductive metal-organic frameworks and conducting polymers for hybrid supercapacitors. ACS Appl Energy Mater 4:9534–9541

    Article  CAS  Google Scholar 

  41. Liu W, Zhang Z, Zhang Y, Zheng Y, Liu N, Su J, Gao Y (2021) Interior and exterior decoration of transition metal oxide through Cu 0/Cu+ Co-doping strategy for high-performance supercapacitor. Nano-Micro Lett 13:1–14

    Article  CAS  Google Scholar 

  42. Das A, Raj B, Mohapatra M, Andersen MS, Basu S (2021) Performance and future directions of transition metal sulfide-based electrode materials towards supercapacitor/supercapattery. Wiley Interdiscip Rev Energy Environ 11:e414

    Google Scholar 

  43. Majumder M, Choudhary RB, Thakur AK, Kumar U (2017) Augmented gravimetric and volumetric capacitive performance of rare earth metal oxide (Eu2O3) incorporated polypyrrole for supercapacitor applications. J Electronal Chem 804:42–52

    Article  CAS  Google Scholar 

  44. Li QY, Li ZS, Lin L, Wang X, Wang YF, Zhang CH, Wang HQ (2008) Facile synthesis of activated carbon/carbon nanotubes compound for supercapacitor application. Chem Eng J 156:500–504

    Article  CAS  Google Scholar 

  45. Obreja VV (2008) On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material a review. Phys E Low Dimens Syst Nanostruct 40:2596–2605

    Article  CAS  Google Scholar 

  46. Hu CC, Chang KH, Lin MC, Wu YT (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano lett 6:2690–2695

    Article  CAS  PubMed  Google Scholar 

  47. Xia H, Meng YS, Yuan G, Cui C, Lu L (2012) A symmetric RuO2/RuO2 supercapacitor operating at 16 V by using a neutral aqueous electrolyte. Electrochem Solid State Lett 15:A60

    Article  CAS  Google Scholar 

  48. Ye C, Lin ZM, Hui SZ (2005) Electrochemical and capacitance properties of rod-shaped MnO2 for supercapacitor. J Electrochem soc 152:A1272

    Article  CAS  Google Scholar 

  49. Kim SL, Lee SJ, Ahn HJ, Song HK, Jang JH (2013) Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. ACS Appl Mater Interf 5:1596–1603

    Article  CAS  Google Scholar 

  50. Shi C, Sun J, Pang Y, Liu Y, Huang B, Liu BT (2022) A new potassium dual-ion hybrid supercapacitor based on battery-type Ni (OH) 2 nanotube arrays and pseudocapacitor-type V2O5-anchored carbon nanotubes electrodes. J Colloid Interf Sci 607:462–469

    Article  CAS  Google Scholar 

  51. Niu Y, Su H, Li X, Li J, Qi Y (2021) Synthesis of porous α-MoO3 microspheres as electrode materials for supercapacitors. J Alloys Compd 898:162863

    Article  CAS  Google Scholar 

  52. Zhang D, Gao S, Zhang J, Wang J, She W, Wang K, Xia X, Yang B, Meng X (2021) Facile solid− phase synthesis of layered NiS/rGO nanocomposite for high− performance hybrid supercapacitor. J Power Sources 514:230590

    Article  CAS  Google Scholar 

  53. Wang H (2021) Facile synthesis of silver fungus-like CoS for high-performance supercapacitors. Journal of Energy Storage 40:102764

    Article  Google Scholar 

  54. El-Hout SI, Mohamed SG, Gaber A, Attia SY, Shawky A, El-Sheikh SM (2021) High electrochemical performance of rGO anchored CuS nanospheres for supercapacitor applications. J Energy Storage 34:102001

    Article  Google Scholar 

  55. Vikraman D, Hussain S, Karuppasamy K, Kathalingam A, Jo E-B, Sanmugam A, Jung J, Kim H-S (2022) Engineering the active sites tuned MoS2 nanoarray structures by transition metal doping for hydrogen evolution and supercapacitor applications. J Alloys Compd 893:162271

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R55), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salma Aman.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharbi, F.F., Aman, S., Ahmad, N. et al. Rational design of a BiFeWO6 nanostructure for supercapacitor applications. J Solid State Electrochem 26, 1251–1258 (2022). https://doi.org/10.1007/s10008-022-05154-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05154-6

Keywords

Navigation