Skip to main content

Advertisement

Log in

Compositional-dependent enhanced physicochemical and photovoltaic studies of nanocrystalline Ti1-xFexO2-δ photoelectrodes co-sensitized with CdS QDs-N719 dye

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Ti1-xFexO2-δ nanoparticles (NPs) with varying content of Fe (III) ions (x = 0.008 to 0.024 and δ =0.5x) were synthesized using sol-gel method at room temperature, and thereafter these NPs have been connected to CdS quantum dots followed by sensitization with N719 moieties for photovoltaic measurements. After the characterization, the powder form of Ti1-xFexO2-δ was mixed thoroughly with DMF solvent followed by CH3CN solvent using ultrasonicator, and then the binder-free paste was coated on transparent conductive oxide F:SnO2 (FTO) glass substrate using doctor blade technique to obtain uniform photoelectrode. After calcination, these different photoelectrodes were subsequently sensitized with either CdS QDs or N719 dye or both. Moreover, the photovoltaic performance of these prepared photoanodes was studied for the different compositions of Ti1-xFexO2-δ when it co-sensitized with CdS QDs and N719 dye. The solar device were designed through Ru-based N719 dye anchored onto Ti1-xFexO2-δ-CdS QDs photoanodes and counter electrode (Pt) as well as electrolyte (I-/I3-) and tested using solar simulator under standard light condition (100 mW/cm2). The overall conversion efficiency of DSSCs is 3.48% for Ti0.992Fe0.008O1.996:CdS:N719 dye; which is 1.5 times more than undoped TiO2 NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Roose B, Pathak S, Steiner U (2015) Doping of TiO2 for sensitized solar cells. Chem Soc Rev 44(22):8326–8349

  2. Nah YC, Paramasivam I, Schmuki P (2010) Doped TiO2 and TiO2 nanotubes: synthesis and applications. ChemPhysChem 11(13):2698–2713

    Article  CAS  Google Scholar 

  3. Di Paola A, Garcıa-López E, Ikeda S, Marcı G, Ohtani B, Palmisano L (2002) Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catal Today 75(1–4):87–93

    Article  Google Scholar 

  4. Wong WK, Malati MA (1986) Doped TiO2 for solar energy applications. Sol Energy 36(2):163–168

    Article  CAS  Google Scholar 

  5. Patil M, S, P Deshmukh S, G Dhodamani A, V More K, D Delekar S, (2017) Different strategies for modification of titanium dioxide as heterogeneous catalyst in chemical transformations. Curr Org Chem 21(9):821–833

    Article  CAS  Google Scholar 

  6. Koli VB, Delekar SD, Pawar SH (2016) Photoinactivation of bacteria by using Fe-doped TiO2-MWCNTs nanocomposites. J Mater Sci Mater Med 27(12):177

    Article  Google Scholar 

  7. Flak D, Coy E, Nowaczyk G, Yate L, Jurga S (2015) Tuning the photodynamic efficiency of TiO2 nanotubes against HeLa cancer cells by Fe-doping. RSC Adv 5(103):85139–85152

    Article  CAS  Google Scholar 

  8. Yadav HM, Kolekar TV, Pawar SH, Kim JS (2016) Enhanced photocatalytic inactivation of bacteria on Fe-containing TiO2 nanoparticles under fluorescent light. J Mater Sci Mater Med 27(3):57

    Article  Google Scholar 

  9. Yu S, Yun HJ, Lee DM, Yi J (2012) Preparation and characterization of Fe-doped TiO2 nanoparticles as a support for a high performance CO oxidation catalyst. J Mater Chem 22(25):12629–12635

    Article  CAS  Google Scholar 

  10. Kösemen A, Kösemen ZA, Canimkubey B, Erkovan M, Başarir F, San SE, Örnek O, Tunç AV (2016) Fe doped TiO2 thin film as electron selective layer for inverted solar cells. Sol Energy 132:511–517

    Article  Google Scholar 

  11. Wang CT, Chiu YC, Wang WP (2016) Synthesis of iron-doped titanium oxide nanobelts for dye-sensitized solar cells. Mater Lett 165:189–191

    Article  CAS  Google Scholar 

  12. Chakhari W, Naceur JB, Taieb SB, Assaker IB, Chtourou R (2017) Fe-doped TiO2 nanorods with enhanced electrochemical properties as efficient photoanode materials. J Alloy Compd 708:862–870

    Article  CAS  Google Scholar 

  13. Lü X, Mou X, Wu J, Zhang D, Zhang L, Huang F, Xu F, Huang S (2010) Improved-performance dye-sensitized solar cells using Nb-doped TiO2 electrodes: efficient electron injection and transfer. Adv Funct Mater 20(3):509–515

    Article  Google Scholar 

  14. Delekar S, More K, Dhodamani A, Patil S, Dongale T, Maity K, Dalal N, Panda DK (2018) Molecular self-assembled designing and characterization of TiO2 NPs-CdS QDs-dye composite for photoanode materials. Mater Charact 139:337–346

    Article  CAS  Google Scholar 

  15. Khalid S, Ahmed E, Khan Y, Nawaz S, Ramzan M, Khalid NR, Ahmed W (2018) Iron pyrite (FeS 2): sustainable photovoltaic material. In Micro and Nanomanufacturing 2:281–318

  16. Lee HJ, Bang J, Park J, Kim S, Park SM (2010) Multilayered semiconductor (CdS/CdSe/ZnS)-sensitized TiO2 mesoporous solar cells: all prepared by successive ionic layer adsorption and reaction processes. Chem Mater 22(19):5636–5643

    Article  CAS  Google Scholar 

  17. Sambrook T, Smura CF, Clarke SJ, Ok KM, Halasyamani PS (2007) Structure and physical properties of the polar oxysulfide CaZnOS. Inorg Chem 46(7):2571–2574

    Article  CAS  Google Scholar 

  18. Yang X, Cao C, Erickson L, Hohn K, Maghirang R, Klabunde K (2009) Photo-catalytic degradation of Rhodamine B on C-, S-, N-, and Fe-doped TiO2 under visible-light irradiation. Appl Catal B Environ 91(3–4):657–662

    Article  CAS  Google Scholar 

  19. Yalçın Y, Kılıç M, Çınar Z (2010) Fe+3-doped TiO2: a combined experimental and computational approach to the evaluation of visible light activity. Appl Catal B Environ 99(3–4):469–477

    Article  Google Scholar 

  20. Dhokale RK, Yadav HM, Achary SN, Delekar SD (2014) Anatase supported nickel nanoparticles for catalytic hydrogenation of 4-nitrophenol. Appl Surf Sci 303:168–174

    Article  CAS  Google Scholar 

  21. Zhang X, Chen M, Yu Y, Yang T, Wang J (2011) Polyelectrolyte-modified multi-walled carbon nanotubes for the adsorption of chromium (vi). Anal Methods 3(2):457–462

    Article  CAS  Google Scholar 

  22. Jafarpour M, Ghahramaninezhad M, Rezaeifard A (2014) Synthesis, characterization and catalytic activity of oleic acid-coated TiO2 nanoparticles carrying MoO2 (acac)2 in the oxidation of olefins and sulfides using economical peroxides. New J Chem 38(7):2917–2926

    Article  CAS  Google Scholar 

  23. Liu M, Piao L, Lu W, Ju S, Zhao L, Zhou C, Li H, Wang W (2010) Flower-like TiO2 nanostructures with exposed 001 facets: facile synthesis and enhanced photocatalysis. Nanoscale 2(7):1115–1117

    Article  CAS  Google Scholar 

  24. Garvie RC (1965) The occurrence of metastable tetragonal zirconia as a crystallite size effect. J Phys Chem 69(4):1238–1243

    Article  CAS  Google Scholar 

  25. Fang Z, Wang Y, Song J, Sun Y, Zhou J, Xu R, Duan H (2013) Immobilizing CdS quantum dots and dendritic Pt nanocrystals on thiolated graphene nanosheets toward highly efficient photocatalytic H2 evolution. Nanoscale 5(20):9830–9838

    Article  CAS  Google Scholar 

  26. Zhu X, Chass GA, Kwek LC, Rogach AL, Su H (2015) Excitonic character in optical properties of tetrahedral CdX (X= S, Se, Te) clusters. J Phys Chem C 119(52):29171–29177

    Article  CAS  Google Scholar 

  27. Jeurgens LP, Vinodh MS, Mittemeijer EJ (2006) Quantitative analysis of multi-element oxide thin films by angle-resolved XPS: application to ultra-thin oxide films on MgAl substrates. Appl Surf Sci 253(2):627–638

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Author SDD thanks Shivaji University, Kolhapur, for financial support under SU/C&U.D section/85/1383 dated 28 March 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagar D. Delekar.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4245 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

More, K.V., Dhodamani, A.G., Dongale, T.D. et al. Compositional-dependent enhanced physicochemical and photovoltaic studies of nanocrystalline Ti1-xFexO2-δ photoelectrodes co-sensitized with CdS QDs-N719 dye. J Solid State Electrochem 26, 1075–1084 (2022). https://doi.org/10.1007/s10008-022-05135-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05135-9

Navigation