Skip to main content
Log in

Study on electrodeposition and corrosion resistance of Cu-Sn alloy prepared in ChCl-EG deep eutectic solvent

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The paper presents several experimental results regarding the electrodeposition of Cu-Sn alloy coatings prepared in ChCl-EG deep eutectic solvents (DESs). The electrochemical behavior of Cu2+ and Sn2+ on glassy carbon electrode (GC) was studied by cyclic voltammetry (CV). The nucleation mechanism of Cu2+ and Sn2+ at different potentials was analyzed by the potentiostatic current density transient (chronoamperometry (CA)). Surface and phase composition of Cu-Sn alloy coating were characterized by scanning electron microscopy (SEM/DEX) and X-ray diffraction (XRD). The corrosion resistance of Cu-Sn coating was studied by potentiodynamic polarization (Tafel) and electrochemical impedance spectroscopy (EIS). From the results, it can be seen that the Cu-Sn alloy can be co-deposited at the potential from − 0.5 to − 0.8 V. The surface of the coating showed a different microstructure when the deposition potential changed. With the negative shift of deposition potential (− 0.5 to − 0.8 V), the particle size of the coating decreased. Comparison in the corrosion behavior of the coatings showed that the change of Sn content had an effect on the corrosion resistance of Cu-Sn alloy. The thickness of the coating (from 7 to 11 μm) was obtained by electrodeposition at − 0.8 V (1 h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jordan M (2010) Electrodeposition of tin lead alloys, in: Schlesinger M, Paunovic M (eds.) Modern electroplating, 5th Edition, John Wiley & Sons, Hoboken, New Jersey

  2. Piccinini N, Ruggiero GN, Baldi G, Robotto A (2000) Risk of hydrocyanic acid release in the electroplating industry. J Hazard Mater 71:395–407

    Article  CAS  Google Scholar 

  3. Pewnim N, Roy S (2013) Electrodeposition of tin-rich Cu-Sn alloys from a methanesulfonic acid electrolyte. Electrochim Acta 90:498–506

    Article  CAS  Google Scholar 

  4. Survila A, Bražinskienė D, Kanapeckaitė S, Mockus Z, Jasulaitienė V (2010) Codeposition of copper and tin from acidic sulfate solutions containing polyethylene glycols. Effect of length of the hydrocarbon chain. J Solid State Electrochem 14:507–514

    Article  CAS  Google Scholar 

  5. Meng G, Sun F, Wang S, Shao Y, Zhang T, Wang F (2010) Effect of electrodeposition parameters on the hydrogen permeation during Cu–Sn alloy electrodeposition. Electrochim Acta 55:2238–2245

    Article  CAS  Google Scholar 

  6. Correia AN, Façanha MX, Lima-Neto PD (2007) Cu–Sn coatings obtained from pyrophosphate-based electrolytes. Surf Coat Tech 201:7216–7221

    Article  CAS  Google Scholar 

  7. Johannsen K, Page D, Roy SA (2000) Systematic investigation of current efficiency during brass deposition from a pyrophosphate electrolyte using RDE, RCE, and QCM. Electrochim Acta 45:3691–3702

    Article  CAS  Google Scholar 

  8. Walsh FC, Low CTJ (2016) A review of developments in the electrodeposition of tin-copper alloys. Surf Coat Tech 304:246–262

    Article  CAS  Google Scholar 

  9. Martyak NM, Seefeldt R (2004) Additive-effects during plating in acid tin methanesulfonate electrolytes. Electrochim Acta 49:4303–4311

    Article  CAS  Google Scholar 

  10. Zanella C, Xing S, Deflorian F (2013) Effect of electrodeposition parameters on chemical and morphological characteristics of Cu–Sn coatings from a methanesulfonic acid electrolyte. Surf Coat Tech 236:394–399

    Article  CAS  Google Scholar 

  11. Jung M, Lee G, Choi J (2017) Electrochemical plating of Cu-Sn alloy in non-cyanide solution to substitute for Ni undercoating layer. Electrochim Acta 241:229–236

    Article  CAS  Google Scholar 

  12. Hansal WEG (2012) Pulse plating of tin and its alloys, in: Hansal WEG, Roy S (Eds.) Pulse Plating, Leuze Verlag, Bad Saulgau

  13. Liu F, Deng Y, Han X, Hu W, Zhong C (2016) Electrodeposition of metals and alloys from ionic liquids. J Alloy Compo 654:163–170

    Article  CAS  Google Scholar 

  14. Tachikawa N, Serizawa N, Katayama Y, Miura T (2008) Electrochemistry of Sn(II)/Sn in a hydrophobic room-temperature ionic liquid. Electrochim Acta 53:6530–6534

    Article  CAS  Google Scholar 

  15. Anicai L, Petica A, Costovici S, Prioteasa P, Visan T (2013) Electrodeposition of Sn and NiSn alloys coatings using choline chloride based ionic liquids—evaluation of corrosion behavior. Electrochim Acta 114:868–877

    Article  CAS  Google Scholar 

  16. Sun J, Ming T, Qian H, Li Q (2019) Electrochemical behaviors and electrodeposition of single-phase Cu-Sn alloy coating in [BMIM]Cl. Electrochim Acta 297:87–93

    Article  Google Scholar 

  17. Liu D, Groult H, Gaillon L, Rizzi C, Soulmi N, Julien CM, Briot E, Krulic D (2015) Tunable electrodeposition of Sn and Sn-based alloys using ionic liquids. J Solid State Electrochem 19:2517–2532

    Article  CAS  Google Scholar 

  18. Ott D, Ilgen F, Kralisch D, König B, Kreisel G (2008) Evaluating the greenness of alternative reaction media. Green Chem 10:1170–1181

    Article  Google Scholar 

  19. Mejía-Caballero I, Aldana-González J, Manh TL, Romero Romo M, Arce-Estrada EM, Campos-Silva I, Ramírez-Silva MT, Palomar-Pardavé M (2018) Mechanism and kinetics of chromium electrochemical nucleation and growth from a choline chloride/ethylene glycol deep eutectic solvent. J Electrochem Soc 16:D393

    Article  Google Scholar 

  20. Qian H, Sun J, Li Q, Sun H, Fu X (2020) Electrochemical mechanism of trivalent chromium reduction in ChCl-EG deep eutectic solvents containing trivalent chromium. J Electrochem Soc 167:102511

  21. Gu CD, Mai YJ, Zhou JP, You YH, Tu JP (2012) Non-aqueous electrodeposition of porous tin-based film as an anode for lithium-ion battery. J Power Sources 214:200–207

    Article  CAS  Google Scholar 

  22. Ghosh S, Roy S (2015) Codeposition of Cu-Sn from ethaline deep eutectic solvent. Electrochim Acta 183:27–36

    Article  CAS  Google Scholar 

  23. Yuea D, Jia Y, Yao Y, Sun J, Jing Y (2012) Structure and electrochemical behavior of ionic liquid analogue based on choline chloride and urea. Electrochim Acta 65:30–36

    Article  Google Scholar 

  24. Barrado E, Rodriguez JA, Hernández P, Castrillejo Y (2016) Electrochemical behaviour of copper species in the 1-buthyl-3-methylimidazolium ch loride (BMIMCl) ionic liquid on a Pt electrode. J Electroanal Chem 768:89–101

    Article  CAS  Google Scholar 

  25. Haerens K, Matthijs E, Binnemans K, Van der Bruggen B  (2009) Electrochemical decomposition of choline chloride based ionic liquid analogues. Green Chem 11:1357–1365

    Article  CAS  Google Scholar 

  26. langhus DL (2002) Fundamentals of electrical chemistry (monk, Paul MS). J Chem Educ 79:112–113

    Article  Google Scholar 

  27. Heerman L, Tarallo A (2000) Electrochemical nucleation with diffusion-limited growth. Properties and analysis of transients. Electrochem Commun 2:85–89

    Article  CAS  Google Scholar 

  28. Berzins T, Delahay P, Oscillographic P (1953) Waves for the reversible deposition of metals on solid electrodes. J Am Chem Soc 75:555–559

    Article  CAS  Google Scholar 

  29. Scharifker B, Hills G (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28:879–889

    Article  CAS  Google Scholar 

  30. Scharifker BR, Mostany J (1984) Three-dimensional nucleation with diffusion controlled growth: part I. Number density of active sites and nucleation rates per site. J Electroanal Chem 177:13–23

    Article  CAS  Google Scholar 

  31. Scharifker BR, Mostany J (2014) Nucleation and growth of new phases on electrode surfaces, developments in electrochemistry: science inspired by Martin Fleischmann. John Wiley & Sons, Ltd

  32. Serruya A, Mostany J, Scharifker BR (1999) The kinetics of mercury nucleation from Hg22+ and Hg2+ solutions on vitreous carbon electrodes. J Electroanal Chem 464:39–47

    Article  CAS  Google Scholar 

  33. Mostany J, Scharifker BR, Saavedra K, Borrás C (2008) Electrochemical nucleation and the classical theory: overpotential and temperature dependence of the nucleation rate. Russ J Electrochem 44:652–658

    Article  CAS  Google Scholar 

  34. Kasach A, Kharitonov D, Makarova I, Wrzesińska A, Zharskii IM, Kurilo II (2020) Effect of thiourea on electrocrystallization of Cu–Sn alloys from sulphate electrolytes. Surf Coat Tech 399:126137

  35. Palomar-Pardavé M, Mostany J, Muñoz-Rizo R, Botello LE, Aldana-González J, Arce-Estrada EM, Montes de Oca-Yemha M, Ramírez-Silva MT, Romo MR (2019) Electrochemical study and physicochemical characterization of iron nanoparticles electrodeposited onto HOPG from Fe(III) ions dissolved in the choline chloride-urea deep eutectic solvent. J Electroanal Chem 851:113453

  36. Bengoa LN, Pary P, Conconi MS, Egli WA (2017) Electrodeposition of Cu-Sn alloys from a methanesulfonic acid electrolyte containing benzyl alcohol. Electrochim Acta 256:211–219

    Article  CAS  Google Scholar 

  37. Wu L, Graves JE, Cobley AJ (2018) Mechanism for the development of Sn-Cu alloy coatings produced by pulsed current electrodeposition. Mater Lett 217:120–123

    Article  CAS  Google Scholar 

  38. Shima K, Tirdad N, Akram A (2011) Effects of bovine serum albumin on the corrosion behaviour of AISI 316L, Co–28Cr–6Mo, and Ti–6Al–4V alloys in phosphate buffered saline solutions. Corros Sci 53:3262–3272

    Article  Google Scholar 

  39. Meng G, Zhang L, Shao Y, Zhang T, Wang F, Dong C, Li X (2009) Effect of refining grain size on the corrosion behavior of Cr(III) conversion layers on zinc coatings. Scr Mater 61:1004–1007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We like to express our gratitude to the anonymous reviewers of this paper for their criticisms and suggestions that contributed to improve our work.

Funding

This work was supported by the project of Liaoning Province Shenyang National Laboratory for Materials Science Joint Research (Project 2019JH3/30100021) and Shenyang Ligong University Innovation Team Fund Support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, H., Fu, X., Chi, Y. et al. Study on electrodeposition and corrosion resistance of Cu-Sn alloy prepared in ChCl-EG deep eutectic solvent. J Solid State Electrochem 26, 469–479 (2022). https://doi.org/10.1007/s10008-021-05086-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05086-7

Keywords

Navigation