Skip to main content

Advertisement

Log in

Potassium ion anode versus sodium ion anode: Potato starch residue derived carbon material as a case study

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Herein, potato starch residue derived carbon materials (PSRC) and KOH activated PSRC (denoted as APSRC) are successfully realized in this work. Interestingly, it is found that PSRC shows better electrochemical performance in potassium ion batteries (KIBs) than in sodium ion batteries (NIBs); however, the APSRC exhibits more excellent performance in NIBs than in KIBs. It is worth noting that the surface area and pore volume might be essential to Na+/K+ storage. For the PSRC with relatively lowered surface area and pore volome, the diffusion-controlled process is the main storage mode in NIBs. Nevertheless, the surface charge storage process is the main storage way for the PSRC in KIBs. On the other hand, the APSRC possesses large ratio of surface-dominated contribution to the whole capacity in NIBs and KIBs, which could be attributed to the more active sizes because of the larger surface area and higher pore volume. Furthermore, based on the optimal performance of APSRC in SIBs, sodium ion capacitors (NICs) utilizing APSRC as both cathode and anode materials are assembled. This NICs demonstrate satisfied performance with the energy density of 76.4 Wh kg−1 at the power density of 150 W kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dunn B, Kamath H, Tarascon J (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  CAS  PubMed  Google Scholar 

  2. Lu L, Han X, Li J, Hua J, Ouyang M (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288

    Article  CAS  Google Scholar 

  3. Liu B, Jia Y, Yuan C, Wang L, Gao X, Yin S, Xu J (2020) Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review. Energy Storage Mater 24:85–112

    Article  Google Scholar 

  4. Hwang J, Myung S, Sun Y (2018) Recent progress in rechargeable potassium batteries. Adv Funct Mater 28:1802938

    Article  Google Scholar 

  5. Hwang J, Myung S, Sun Y (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614

    Article  CAS  PubMed  Google Scholar 

  6. Dong X, Xing Z, Zheng G, Gao X, Hong H, Ju Z, Zhuang Q (2020) MoS2/N-doped graphene aerogles composite anode for high performance sodium/potassium ion batteries. Electrochim Acta 339:135932–135943

    Article  CAS  Google Scholar 

  7. Lu G, Wang H, Zheng Y, Zhang H, Yang Y, Shi J, Huang M, Liu W (2019) Metal-organic framework derived N-doped CNT@porous carbon for high-performance sodium- and potassium-ion storage. Electrochim Acta 319:541–551

    Article  CAS  Google Scholar 

  8. Larcher D, Tarascon J (2014) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19

    Article  PubMed  Google Scholar 

  9. Yang J, Ju Z, Jiang Y, Xing Z, Xi B, Feng J, Xiong S (2018) Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv Mater 30:1700104

    Article  Google Scholar 

  10. Wang S, Xia L, Yu L, Zhang L, Wang H, Lou X (2016) Free-standing nitrogendoped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv Energy Mater 6:1502217

    Article  Google Scholar 

  11. Hwang J, Kim J, Yu T, Myung S, Sun Y (2018) Development of P3–K0.69CrO2 as an ultra-high performance cathode material for K-ion batteries. Energy Environ Sci 11:2821–2827

    Article  CAS  Google Scholar 

  12. Hwang J, Kim H, Sun Y (2018) High performance potassium-sulfur batteries based on a sulfurized polyacrylonitrile cathode and polyacrylic acid binder. J Mater Chem A 6:14587–14593

    Article  CAS  Google Scholar 

  13. Xiao N, Zhang X, Liu C, Wang Y, Li H, Qiu J (2019) Coal-based carbon anodes for high-performance potassium-ion batteries. Carbon 147:574–581

    Article  CAS  Google Scholar 

  14. Lao M, Zhang Y, Luo W, Yan Q, Sun W, Dou S (2017) Alloy-Based Anode Materials toward Advanced Sodium-Ion Batteries. Adv Mater 29:1700622

    Article  Google Scholar 

  15. Xie H, Kalisvaart W, Olsen B, Luber E, Mitlin D, Buriak J (2017) Sn-Bi-Sb alloys as anode materials for sodium ion batteries. J Mater Chem A 5:9661–9670

    Article  CAS  Google Scholar 

  16. Xiong P, Wu J, Zhou M, Xu Y (2020) Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-performance potassium-ion batteries. ACS Nano 14:1018–1102

    Article  CAS  PubMed  Google Scholar 

  17. Zhou L, Cao Z, Wahyudi W, Zhang J, Hwang J, Cheng Y, Wang L, Cavallo L, Anthopoulos T, Sun Y, Alshareef H, Ming J (2020) Electrolyte engineering enables high stability and capacity alloying anodes for sodium and potassium ion batteries. ACS Energy Lett 5:766–776

    Article  CAS  Google Scholar 

  18. Wu X, Chen Y, Xing Z, Lam C, Pang S, Zhang W, Ju Z (2019) Advanced carbon-based anodes for potassium-ion batteries. Adv Energy Mater 9:1900343

    Article  Google Scholar 

  19. Jian Z, Xing Z, Bommier C, Li Z, Ji X (2016) Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv Energy Mater 6:1501874

    Article  Google Scholar 

  20. Chen C, Wang Z, Zhang B, Miao L, Cai J, Peng L, Huang Y, Jiang J, Huang Y, Zhang L, Xie J (2017) Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater 8:161–168

    Article  Google Scholar 

  21. Hou H, Qiu X, Wei W, Zhang Y, Ji X (2017) Carbon Anode Materials for Advanced Sodium-Ion Batteries. Adv Energy Mater 7:1602898

    Article  Google Scholar 

  22. Wu Y, Liu X, Yang Z, Gu L, Yu Y (2016) Nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries. Small 12:3522–3529

    Article  CAS  PubMed  Google Scholar 

  23. Wang L, Wei Z, Mao M, Wang H, Li Y, Ma J (2019) Metal oxide/graphene composite anode materials for sodium-ion batteries. Energy Storage Mater 16:434–454

    Article  Google Scholar 

  24. Wang Z, Dong K, Wang D, Luo S, Liu Y, Wang Q, Zhang Y, Hao A, Shi C, Zhao N (2019) Ultrafine SnO2 nanoparticles encapsulated in 3D porous carbon as a high-performance anode material for potassium-ion batteries. J Power Sources 441:227191–227196

    Article  CAS  Google Scholar 

  25. Cao K, Liu H, Li W, Han Q, Zhang Z, Huang K, Jing Q, Jiao L (2019) CuO nanoplates for high-performance potassium-ion batteries. Small 15:1901775

    Article  Google Scholar 

  26. Liu Y, Tai Z, Zhang J, Pang W, Zhang Q, Feng H, Konstantinov K, Guo Z, Liu H (2018) Boosting potassium-ion batteries by few-layered composite anodes prepared via solution-triggered one-step shear exfoliation. Nat Commun 9:3645

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang Y, Tao H, Li T, Du S, Li J, Zhang Y, Yang X (2018) Vertically oxygen-incorporated MoS2 nanosheets coated on carbon fibers for sodium-ion batteries. ACS Appl Mater Interfaces 10:35206–35215

    Article  CAS  PubMed  Google Scholar 

  28. Chen Y, Luo W, Carter M, Zhou L, Dai J, Fu K, Lacey S, Li T, Wan J, Han X, Bao Y, Hu L (2015) Organic electrode for non-aqueous potassium-ion batteries. Nano Energy 18:205–211

    Article  CAS  Google Scholar 

  29. Zhao Q, Lu Y, Chen J (2017) Advanced organic electrode materials for rechargeable sodium-ion batteries. Adv Energy Mater 7:1601792

    Article  Google Scholar 

  30. Zhu Y, Chen M, Li Q, Yuan C, Wang C (2017) High-yield humic acid-based hard carbons as promising anode materials for sodium-ion batteries. Carbon 123:727–734

    Article  CAS  Google Scholar 

  31. Fu L, Tang K, Song K, Aken P, Yu Y, Maier J (2014) Nitrogen doped porous carbon fibers as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 6:1384–1389

    Article  CAS  PubMed  Google Scholar 

  32. Alvina S, Chandrab C, Kima J (2020) Extended plateau capacity of phosphorus-doped hard carbon used as an anode in Na- and K-ion batteries. Chem Eng J 391:123576–123591

    Article  Google Scholar 

  33. Mahmood A, Li S, Ali Z, Tabassum H, Zhu B, Liang Z, Meng W, Aftab W, Guo W, Zhang H, Yousaf M, Gao S, Zou R, Zhao Y (2019) Ultrafast sodium/potassium-ion intercalation into hierarchically porous thin carbon Shells. Adv Mater 31:1805430

    Article  Google Scholar 

  34. Tian W, Wang L, Huo K, He X (2019) Red phosphorus filled biomass carbon as high-capacity and long-life anode for sodium-ion batteries. J Power Sources 430:60–66

    Article  CAS  Google Scholar 

  35. Li Y, Hu Y, Titirici M, Chen L, Huang X (2016) Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv Energy Mater 6:1600659

    Article  Google Scholar 

  36. Li Y, Hu Y, Li H, Chen L, Huang X (2016) A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J Mater Chem A 4:96–104

    Article  Google Scholar 

  37. Wang P, Qiao B, Du Y, Li Y, Zhou X, Dai Z, Bao J (2015) Fluorine-doped carbon particles derived from lotus petioles as high-performance anode materials for sodium-ion batteries. J Phys Chem C 119:21336–21344

    Article  CAS  Google Scholar 

  38. Gao Z, Song N, Zhang Y, Schwab Y, He J, Li X (2018) Carbon nanotubes derived from yeast-fermented wheat flour and their energy storage application. ACS Sustainable Chem Eng 6:11386–11396

    Article  CAS  Google Scholar 

  39. Wu Z, Wang L, Huang J, Zou J, Chen S, Cheng H, Jiang C, Gao P, Niu X (2019) Loofah-derived carbon as an anode material for potassium ion and lithium ion batteries. Electrochim Acta 306:446–453

    Article  CAS  Google Scholar 

  40. Tan J, Li D, Liu Y, Zhang P, Qu Z, Yan Y, Hu H, Cheng H, Zhang J, Dong M, Wang C, Fan J, Li Z, Guo Z, Liu M (2020) A self-supported 3D aerogel network lithium-sulfur battery cathode: sulfur spheres wrapped with phosphorus doped graphene and bridged with carbon nanofibers. J Mater Chem A 8:7980–7990

    Article  CAS  Google Scholar 

  41. Hu H, Cheng H, Song K, Dai S, Liu Y, Stock H, Yu Y, Zhang Z, Liu M (2020) Nd3+ ions induced rational morphology control of transition metal oxides for high energy storage performance. J Power Sources 472:228599–228606

    Article  CAS  Google Scholar 

  42. Cheng H, Hu H, Li G, Zhang M, Xiang K, Zhu Z, Wan Y (2020) Calcium titanate micro-sheets scaffold for improved cell viability and osteogenesis. Chem Eng J 389: 124400

  43. Gao L, Chen S, Zhang L, Yang X (2018) High performance sodium ion hybrid supercapacitors based on Na2Ti3O7 nanosheet arrays. J Alloy Compd 766:284–290

    Article  CAS  Google Scholar 

  44. Lim E, Jo C, Kim M, Kim M, Chun J, Kim H, Park J, Roh K, Kang K, Yoon S, Lee J (2016) High-performance sodium-ion hybrid supercapacitor based on Nb2O5 @carbon core-shell nanoparticles and reduced graphene oxide nanocomposites. Adv Funct Mater 26:3711–3719

    Article  CAS  Google Scholar 

  45. Dong S, Shen L, Li H, Pang G, Dou H, Zhang X (2016) Flexible sodium-ion pseudocapacitors based on 3D Na2Ti3O7 nanosheet arrays/carbon textiles anodes. Adv Funct Mater 26:3703–3710

    Article  CAS  Google Scholar 

  46. Dong S, Shen L, Li H, Nie P, Zhu Y, Sheng Q, Zhang X (2015) Pseudocapacitive behaviours of Na2Ti3O7@CNT coaxial nanocables for high-performance sodiumion capacitors. J Mater Chem A 3:21277–21283

    Article  CAS  Google Scholar 

  47. Li H, Zhu Y, Dong S, Shen L, Chen Z, Zhang X, Yu G (2016) Self-assembled Nb2O5 nanosheets for high energy-high power sodium ion capacitors. Chem Mater 28:5753–5760

    Article  CAS  Google Scholar 

  48. Le Z, Liu F, Nie P, Li X, Liu X, Bian Z, Chen G, Wu H, Lu Y (2017) Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2- graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11:2952–2960

    Article  CAS  PubMed  Google Scholar 

  49. Jian Z, Raju V, Li Z, Xing Z, Hu Y, Ji X (2015) A high-power symmetric Na-ion pseudocapacitor. Adv Funct Mater 25:5778–5785

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (51772169, 52072217, 51802261),the National Key R&D Program of China (2018YFB0905400), the Major Technological Innovation Project of Hubei Science and Technology Department (2019AAA164),the Natural Science Foundation of Hubei Province of China (2019CFB337) and Natural Science Foundation of Hubei Provincial Department of Education (Q20191204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuelin Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3992 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Wang, Z., Zhang, L. et al. Potassium ion anode versus sodium ion anode: Potato starch residue derived carbon material as a case study. J Solid State Electrochem 26, 343–352 (2022). https://doi.org/10.1007/s10008-021-05052-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05052-3

Keywords

Navigation