Skip to main content
Log in

Efficient electrosorption of uranium(VI) by B, N, and P co-doped porous carbon materials containing phosphate functional groups

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, polyphosphazene was synthesized as precursors using benzene-1,4-diboronic acid and hexachlorocyclotriphosphazene (HCCP) by a simple one-step ultrasonic method. Furthermore, B, N, and P co-doped carbon materials containing phosphate functional groups (denoted as BNPCs-PO4) was obtained by the carbonization and functionalization of precursors at high temperature. Through the structural characterization and the investigation of electrochemical and electrosorption properties, it can be proved that BNPCs-PO4 has excellent porous structure and electrosorption properties with the maximum electrosorption capacity of 750 ± 40 mg/g for U(VI) and the equilibrium time of 24 min. The optimal pH and applied potential for electrosorption were 5.0 and 0.9 V, respectively. Meanwhile, it also showed high selectivity under the coexistence of multiple metal ions and excellent recyclability after six cycles. The results showed the introduction of heteroatoms improved the electrosorption properties of carbon materials and BNPCs-PO4 can be utilized as electrode for the removal of U(VI) in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

All code generated or used during the study are available from the corresponding author by request.

References

  1. Hu BW, Ye F, Ren XM, Zhao DL, Sheng GD, Li H, Ma JY, Wang XK, Huang YY (2016) X-ray absorption fine structure study of enhanced sequestration of U(VI) and Se(IV) by montmorillonite decorated with zero-valent iron nanoparticles. Environ Sci Nano 3(6):1460–1472

    Article  CAS  Google Scholar 

  2. Wang XL, Guo HX, Wang F, Tan TS, Zhang HX (2020) Halloysite nanotubes: an eco-friendly adsorbent for the adsorption of Th(IV)/U(VI) ions from aqueous solution. J Radioanal Nucl Chem 324(3):1151–1165

    Article  CAS  Google Scholar 

  3. Zheng Z, Wang Y, Zhao W, Xiong G, Cao X, Dai Y, Le Z, Yu S, Zhang Z, Liu Y (2017) Adsorptive removal of uranyl ions in aqueous solution using hydrothermal carbon spheres functionalized with 4-aminoacetophenone oxime group. J Radioanal Nucl Chem 312(2):187–198

    Article  CAS  Google Scholar 

  4. Manos MJ, Kanatzidis MG (2012) Layered metal sulfides capture uranium from seawater. J Am Chem Soc 134(39):16441–16446

    Article  CAS  Google Scholar 

  5. Fourie M, Meyer WCMH, Van Der Westhuizen DJ, Krieg HM (2016) Uranium recovery from simulated molybdenum-99 production residue using non-dispersive membrane based solvent extraction. Hydrometallurgy 164:330–333

    Article  CAS  Google Scholar 

  6. Vigier JF, Laplace A, Renard C, Miguirditchian M, Abraham F (2018) Uranium (III)-plutonium (III) co-precipitation in molten chloride. J Nucl Mater 499:394–400

    Article  CAS  Google Scholar 

  7. Hoyer M, Zabelt D, Steudtner R, Brendler V, Haseneder R, Repke JU (2014) Influence of speciation during membrane treatment of uranium contaminated water. Sep Purif Technol 132:413–421

    Article  CAS  Google Scholar 

  8. Biesheuvel PM, Porada S, Levi M, Bazant MZ (2014) Attractive forces in microporous carbon electrodes for capacitive deionization. J Solid State Electrochem 18:1365–1376

    Article  CAS  Google Scholar 

  9. Zafra MC, Lavela P, Rasines G, Macías C, Tirado JL (2014) Effect of the resorcinol/catalyst ratio in the capacitive performance of carbon xerogels with potential use in sodium chloride removal from saline water. J Solid State Electrochem 18:2847–2856

    Article  CAS  Google Scholar 

  10. Wei YC, Huo YQ, Tian GY, Meng QH, Cao B (2016) Nitrogen-doped functional graphene nanocomposites for capacitive deionization of NaCl aqueous solutions. J Solid State Electrochem 20:2351–2362

    Article  CAS  Google Scholar 

  11. Wang SS, Feng JW, Meng QH, Cao B, Tian GY (2019) Study on boron and nitrogen co-doped graphene xerogel for high-performance electrosorption application. J Solid State Electrochem 23:2377–2390

    Article  CAS  Google Scholar 

  12. Cen BQ, Li KX, Lv CC, Yang R (2020) A novel asymmetric activated carbon electrode doped with metal -organic frameworks for high desalination performance J Solid State. Electrochem 24:687–697

    CAS  Google Scholar 

  13. Sufiani O, Elisadiki J, Machunda RL, Jande YAC (2019) Modification strategies to enhance electrosorption performance of activated carbon electrodes for capacitive deionization applications. J Electroanal Chem 848:113328

  14. Liu NL, Sun SH, Hou CH (2019) Studying the electrosorption performance of activated carbon electrodes in batch-mode and single-pass capacitive deionization. Sep Purif Technol 215:403–409

    Article  CAS  Google Scholar 

  15. Feng JH, Xiong S, Wang Y (2019) Atomic layer deposition of TiO2 on carbon-nanotube membranes for enhanced capacitive deionization. Sep Purif Technol 213:70–77

    Article  CAS  Google Scholar 

  16. Bao SX, Duan JH, Zhang YM (2018) Characteristics of nitric acid-modified carbon nanotubes and desalination performance in capacitive deionization. Chem Eng Technol 41(9):1793–1799

    Article  CAS  Google Scholar 

  17. Qian M, Duan M, Gong Z (2019) Nitrogen doped self-shrinking porous 3D graphene capacitor deionization electrode. Int J Energ Res 43(13):7583–7593

    CAS  Google Scholar 

  18. Roberts AD, Li X, Zhang H (2014) Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem Soc Rev 45(34):4341–4356

    Article  Google Scholar 

  19. Liu W, Zhang SK, Dar SU, Zhao Y, Akram R, Zhang XF, Jin S, Wu ZP, Wu DZ (2018) Polyphosphazene-derived heteroatoms-doped carbon materials for supercapacitor electrodes. Carbon 129:420–427

    Article  CAS  Google Scholar 

  20. Liu XP, Liu Y, Wang Y, Yuan DZ, Liu JB, Chew JW (2021) Preparation of porous carbon materials by polyphosphazene as precursor for sorption of U(VI). Colloid Interf Sci 41:100387

  21. Zhao WH, Lin XY, Qin Y, Cai HM, Chen YL, Luo XG (2017) Preparation of chemically oxidized porous carbon and its adsorption of uranium(VI) from aqueous solution. J Radioanal Nucl Chem 314(3):1853–1864

    Article  CAS  Google Scholar 

  22. Bayramoglu G, Arica MY (2016) Amidoxime functionalized Trametes trogii pellets for removal of uranium (VI) from aqueous medium. J Radioanal Nucl Chem 307(1):373–384

    Article  CAS  Google Scholar 

  23. Wang YQ, Zhang ZB, Liu YH, Cao XH, Liu YT, Qin L (2012) Adsorption of U(VI) from aqueous solution by the carboxyl-mesoporous carbon. Chem Eng J 198:246–253

    Article  Google Scholar 

  24. Li L, Huang S, Wen T, Ma R, Yin L, Li J, Chen Z, Hayat T, Hu B, Wang X (2019) Fabrication of carboxyl and amino functionalized carbonaceous microspheres and their enhanced adsorption behaviors of U(VI). J Colloid Interf Sci 543:225–236

    Article  CAS  Google Scholar 

  25. Sun G, Ma L, Ran J, Li B, Shen X, Tong H (2016) Templated synthesis and activation of highly nitrogen-doped worm-like carbon composites based on melamine-urea-formaldehyde resins for high performance supercapacitors. Electrochim Acta 194:168–178

    Article  CAS  Google Scholar 

  26. Yu J, Guo M, Muhammad F, Wang A, Zhang F, Li Q, Zhu G (2014) One-pot synthesis of highly ordered nitrogen-containing mesoporous carbon with resorcinol–urea–formaldehyde resin for CO2 capture. Carbon 69:502–514

    Article  CAS  Google Scholar 

  27. Jiang J, Chen H, Wang Z, Bao L, Qiang Y, Guan S, Chen J (2015) Nitrogen-doped hierarchical porous carbon microsphere through KOH activation for supercapacitors. J Colloid Interf Sci 452:54–61

    Article  CAS  Google Scholar 

  28. Bai C, Zhang M, Bo L, Yin T, Li S (2015) Three novel triazine-based materials with different O/S/N set of donor atoms: one-step preparation and comparison of their capability in selective separation of uranium. J Hazard Mater 300:368–377

    Article  CAS  Google Scholar 

  29. Huang XB, Wang Q, Jiang D, Huang YM (2017) Facile synthesis of B. N co-doped three-dimensional porous graphitic carbon toward oxygen reduction reaction and oxygen evolution reaction, Catal Commun 100:89–92

    CAS  Google Scholar 

  30. Zeng K, Su JM, Cao XC, Zheng XJ, Li XW, Tian JH, Jin C, Yang RZ (2020) B, N co-doped ordered mesoporous carbon with enhanced electrocatalytic activity for the oxygen reduction reaction. J Alloys Compd 824:153908

  31. Liao Y, Wang M, Chen DJ (2019) Electrosorption of uranium(VI) by highly porous phosphate-functionalized graphene hydrogel. Appl Surf Sci 484:83–96

    Article  CAS  Google Scholar 

  32. Zhao S, Liu J, Li C, Ji W, Yang M, Huang H, Liu Y, Kang Z (2014) Tunable ternary (N, P, B)-doped porous nanocarbons and their catalytic properties for oxygen reduction reaction. ACS Appl Mater Inter 6(24):22297–22304

    Article  CAS  Google Scholar 

  33. Liu W, Zhang SK, Dar SU, Zhao Y, Akram R, Zhang XF, Jin S, Wu ZP, Wu DZ (2017) Polyphosphazene-derived heteroatoms-doped carbon materials for supercapacitor electrodes. Carbon 129:420–427

    Article  Google Scholar 

  34. Li Y, Liu Y, Shen J, Qi J, Li J, Sun X, Shen J, Han W, Wang L (2018) Design of nitrogen-doped cluster-like porous carbons with hierarchical hollow nanoarchitecture and their enhanced performance in capacitive deionization. Desalination 430:45–55

    Article  CAS  Google Scholar 

  35. Yun L, Wang M, Chen DJ (2018) Preparation of polydopamine-modified graphene oxide/chitosan aerogel for uranium(VI) adsorption. Ind Eng Chem Res 57:8472–8483

    Article  Google Scholar 

  36. Wu ZS, Winter A, Chen L, Sun Y, Turchanin A, Feng XL, Müllen K (2012) Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv Mater 24(37):5130–5135

    Article  CAS  Google Scholar 

  37. Xue Y, Cao M, Gao JZ, Gui YY, Chen JQ, Liu P, Ma FQ, Yan YD, Qiu M (2021) Electroadsorption of uranium on amidoxime modified graphite felt. Sep Purif Technol 255:117753

  38. Wu XD, Li KW, Ying SJH, Liu L, Wang M, Liao Y (2019) Three-dimensional graphene materials for UO22+ electrosorption. J Radioanal Nucl Chem 321(3):977–984

    Article  CAS  Google Scholar 

  39. Zhou J, Zhou HJ, Zhang YZ, Wu J, Zhang HM, Wang GZ, Li JX (2020) Pseudocapacitive deionization of uranium(VI) with WO3/C electrode. Chem Eng J 398:125460

  40. Jung CH, Lee HY, Moon JK, Won HJ, Shul YG (2010) Electrosorption of uranium ions on activated carbon fibers. J Radioanal Nucl Chem 287(3):833–839

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (21966005, 22066002), the Natural Science Foundation of Jiangxi Province (20202BABL203001, 20192BAB202007, 20192ACB21001), the Opening fund project of State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (NRE1926).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Liu or Changfu Wang.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, Y., Wang, Y. et al. Efficient electrosorption of uranium(VI) by B, N, and P co-doped porous carbon materials containing phosphate functional groups. J Solid State Electrochem 25, 2443–2454 (2021). https://doi.org/10.1007/s10008-021-05029-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05029-2

Keywords

Navigation