Skip to main content

Advertisement

Log in

Electrochemical performance evaluation of template-assisted and morphology-modified ultra-small-sized NiO as electrodes for supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nickel oxide is a significant candidate for the supercapacitor electrode application due to its high theoretical capacitance. This work demonstrates the synthesis of ultra-small-sized NiO nanomaterial using Polyvinyl alcohol template-assisted hydrothermal route succeeded by a significant annealing process. The crystallinity, chemical state, and bonding properties of the NiO materials are evaluated by X-ray diffraction studies, X-ray photoelectron, Raman, and Fourier transform infrared spectroscopic analyses. The morphological features are controlled by a variation of PVA template, and the high concentrations of PVA template provide ultra-small-sized NiO nanomaterial. The surface morphological features are characterized using scanning electron microscopy and high-resolution transmission electron microscopy. The pseudocapacitor behavior of NiO materials was confirmed by the electrochemical performance studies using cyclic voltammetry, EIS, and galvanocharge-discharge measurements. The ultra-small-sized NiO material possessed a specific capacitance of 534.5 Cg−1 and good rate capability at a scan rate of 5 mVs−1. The discharge curve provides the specific capacitance of 563.75 Cg−1 at a current density of 1 Ag−1 and at a scan rate of 100 mVs−1, withstands 91% of its primary capacitance after 2000 cycles. This work authenticates an efficient approach for enhancing the potential of metal oxides for energy storage applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gill RS, Saraf RF, Kundu S (2013) Self-assembly of gold nanoparticles on poly(allylamine hydrochloride) nanofiber: a new route to fabricate “necklace” as single electron devices. ACS Appl Mater Interfaces 5:9949–9956

    Article  CAS  PubMed  Google Scholar 

  2. Wei W, Yang Z (2008) Template synthesis of hierarchically structured composites. Adv Mater 20:2965–2969

    Article  CAS  Google Scholar 

  3. Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887

    Article  CAS  Google Scholar 

  4. Hu JS, Zhong LS, Song WG, Wan LJ (2008) Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Adv Mater 20:2977–2982

    Article  CAS  Google Scholar 

  5. Zhang J, Song P, Li J, Yang Z, Wang Q (2017) Template-assisted synthesis of hierarchical MoO3 microboxes and their high gas-sensing performance. Sensors Actuators B Chem 249:458–466

    Article  CAS  Google Scholar 

  6. Zhang Y, Ru Y, Gao H-L, Wang S-W, Yan J, Gao K-Z (2019) Sol-gel synthesis and electrochemical performance of NiCo2O4 nanoparticles for supercapacitor applications. J Electrochem Sci 9(4):243

    Article  CAS  Google Scholar 

  7. Li J, Wei C, Sun Y, Liu Q, Zhang X, Guo J (2019) Hierarchical Ni(OH)2-MnO2 array as supercapacitor electrode with high capacity. Adv Mater Interfaces 6:2–7

    Google Scholar 

  8. Yang Y, Matsubara S, Xiong L, Hayakawa T, Nogami M (2007) Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. J Phys Chem C 111:9095–9104

    Article  CAS  Google Scholar 

  9. Shen L, Qiao Y, Guo Y, Meng S, Yang G, Wu M et al (2014) Facile co-precipitation synthesis of shape-controlled magnetite nanoparticles. Ceram Int 40:1519–1524

    Article  CAS  Google Scholar 

  10. Okitsu K, Ashokkumar M, Grieser F (2005) Sonochemical synthesis of gold nanoparticles: effects of ultrasound frequency. J Phys Chem B 109:20673–20675

    Article  CAS  PubMed  Google Scholar 

  11. Cui K, Song Y, Yao Y, Huang Z, Wang L (2008) A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on DNA-networks modified glassy carbon electrode. Electrochem Commun 10:663–667

    Article  CAS  Google Scholar 

  12. Chen WX, Lee JY, Liu Z (2002) Microwave-assisted synthesis of carbon supported Pt nanoparticles for fuel cell applications. Chem Commun 2588–2589

  13. Shikao S, Jiye W (2001) Combustion synthesis of Eu3+ activated Y3Al5O12 phosphor nanoparticles. J Alloys Compd 327:82–86

    Article  Google Scholar 

  14. Tsukada T, Venigalla S, Morrone AA, Adair JH (2004) Low-temperature hydrothermal synthesis of yttrium-doped zirconia powders. J Am Ceram Soc 82:1169–1174

    Article  Google Scholar 

  15. Somiya S, Akiba T (1999) Hydrothermal zirconia powders: a bibliography. J Eur Ceram Soc 19:81–87

    Article  CAS  Google Scholar 

  16. Shadiya MA, Nandakumar N, Joseph R, George KE (2017) On the facile polyvinyl alcohol assisted sol-gel synthesis of tetragonal zirconia nanopowder with mesoporous structure. Adv Powder Technol 28:3148–3157

    Article  CAS  Google Scholar 

  17. Xie Y, Chang F, Li C, Chen J, Luo J, Li L et al (2014) One-pot polyvinyl alcohol-assisted hydrothermal synthesis of hierarchical flower-like BiOCl nanoplates with enhancement of photocatalytic activity for degradation of rhodamine B. Clean - Soil, Air, Water 42:521–527

    Article  CAS  Google Scholar 

  18. Zhang Y, Wang J, Wei H, Hao J, Mu J, Cao P et al (2016) Hydrothermal synthesis of hierarchical mesoporous NiO nanourchins and their supercapacitor application. Mater Lett 162:67–70

    Article  CAS  Google Scholar 

  19. Min J, Liu J, Lei M, Wang W, Lu Y, Yang L et al (2016) Self-assembly of parallelly aligned NiO hierarchical nanostructures with ultrathin nanosheet subunits for electrochemical supercapacitor applications. ACS Appl Mater Interfaces 8:780–791

    Article  CAS  PubMed  Google Scholar 

  20. Ramu Manikandana, Justin Rajb C, Kook Hyun Yub, Byung Chul Kima (2019) Self-coupled nickel sulfide @ nickel vanadium sulfide nanostructure as a novel high capacity electrode material for supercapattery. Appl Surf Sci 497:143778

  21. Li X, Li X, Wang G, Wang X, Ji J (2013) Flexible supercapacitor based on MnO2 nanoparticles via electrospinning. J Mater Chem A 1:10103–10106

    Article  CAS  Google Scholar 

  22. Muhammad Zahir Iqbala, Abbas Khan, Arshid Numan, Syed Shabhi Haider, Javed Iqbal (2019) Ultrasonication-assisted synthesis of novel strontium based mixed phase structures for supercapattery devices. Ultrasonics - Sonochemistry 59:104736

  23. Zhang Y, Park M, Kim HY, Park SJ (2017) Moderated surface defects of Ni particles encapsulated with NiO nanofibers as supercapacitor with high capacitance and energy density. J Colloid Interface Sci 500:155–163

    Article  CAS  PubMed  Google Scholar 

  24. Oloore LE, Gondal MA, Popoola AJ, Popoola IK (2020) Pseudocapacitive contributions to enhanced electrochemical energy storage in hybrid perovskite-nickel oxide nanoparticles composites electrodes. Electrochimica Acta 361:137082

  25. Nirmalesh Naveen A, Selladurai S (2015) Novel low temperature synthesis and electrochemical characterization of mesoporous nickel cobaltite-reduced graphene oxide (RGO) composite for supercapacitor application. Electrochim Acta 173:290–301

    Article  CAS  Google Scholar 

  26. Mondal AK, Dawei Su, Wanga Y, Chen S, Liu Qi, Wang G (2014) Microwave hydrothermal synthesis of urchin-like NiO nanospheres as electrode materials for lithium-ion batteries and supercapacitors with enhanced electrochemical performances. J Alloy Compd 582:522–527

    Article  CAS  Google Scholar 

  27. Sahu KK, Sahoo RK, Beshra LD, Mohapatra M (2021) Facile synthesis of nickel oxalate@carbon as electrical double layer and its derived nickel oxide as pseudo-type supercapacitor electrodes. Ionics 2021(27):819–832

    Article  CAS  Google Scholar 

  28. Mordina B, Neeraj NS, Srivastava AK, Mukhopadhyay K, Prasad NE (2021) Investigation of the structure-property relationship in binder free asymmetric supercapacitor device based on NiCo2O4.nH2O nanostructures. J Electroanal Chem 880:114850

  29. Rastabi SA, Mamoory RS, Blomquist N, Phadatare M, Olin H (2020) Synthesis of a NiMoO4/3D-rGO nanocomposite via starch medium precipitation method for supercapacitor performance. Batteries 6:5

    Article  CAS  Google Scholar 

  30. Agudosi ES, Abdullah EC, Numan A, Khalid M, Mubarak NM, Benages-Vilau R, Gómez-Romero P, Aid SR, Omar N (2021) Optimisation of NiO electrodeposition on 3D graphene electrode for electrochemical energy storage using response surface methodology. J Electroanal Chem 882:114992

  31. Furlan A, Lu J, Hultman L, Jansson U, Magnuson M (2014) Crystallization characteristics and chemical bonding properties of nickel carbide thin film nanocomposites. J Phys Condens Matter 26:415501

  32. Payne BP, Biesinger MC, McIntyre NS (2012) Use of oxygen/nickel ratios in the XPS characterisation of oxide phases on nickel metal and nickel alloy surfaces. J Electron Spectros Relat Phenomena 185:159–166

    Article  CAS  Google Scholar 

  33. Ma L, Sun G, Ran J, Lv S, Shen X, Tong H (2018) One-pot template-free strategy toward 3D hierarchical porous nitrogen-doped carbon framework in situ armored homogeneous NiO nanoparticles for high-performance asymmetric supercapacitors. ACS Appl Mater Interfaces 10:22278–22290

    Article  CAS  PubMed  Google Scholar 

  34. Lenglet M, Hochu F, Dürr J, Tuilier MH (1997) Investigation of the chemical bonding in 3d8 nickel(II) charge transfer insulators (NiO, oxidic spinels) from ligand-field spectroscopy, Ni 2p XPS and X-ray absorption spectroscopy. Solid State Commun 104:793–798

    Article  CAS  Google Scholar 

  35. Haider A, Ijaz M, Ali S, Haider J, Imran M, Majeed H et al (2020) Green synthesized phytochemically (Zingiber officinale and Allium sativum) reduced nickel oxide nanoparticles confirmed bactericidal and catalytic potential. Nanoscale Res Lett 15

  36. Cai G, Wang X, Cui M, Darmawan P, Wang J, Eh ALS et al (2015) Electrochromo-supercapacitor based on direct growth of NiO nanoparticles. Nano Energy 12:258–267

    Article  CAS  Google Scholar 

  37. Biesinger MC, Payne BP, Lau LWM, Gersonb A, Roger et al (2009) X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf Interface Anal 41:324–333

    Article  CAS  Google Scholar 

  38. Grosvenora AP, Biesingera MC, Roger St.C. Smarta et al (2006) New interpretations of XPS spectra of nickel metal and oxides. Surf Sci 600:1771–1779

    Article  CAS  Google Scholar 

  39. Zhu G, Xi C, Xu H, Zheng D, Liu Y, Xu X et al (2012) Hierarchical NiO hollow microspheres assembled from nanosheet-stacked nanoparticles and their application in a gas sensor. RSC Adv 2:4236–4241

    Article  CAS  Google Scholar 

  40. Zhao B, Song J, Liu P, Xu W, Fang T, Jiao Z et al (2011) Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors. J Mater Chem 21:18792–18798

    Article  CAS  Google Scholar 

  41. Wang H, Yi H, Chen X, Wang X (2014) Asymmetric supercapacitors based on nano-architectured nickel oxide/graphene foam and hierarchical porous nitrogen-doped carbon nanotubes with ultrahigh-rate performance. J Mater Chem A 2:3223–3230

    Article  CAS  Google Scholar 

  42. Duan WJ, Lu SH, Wu ZL, Wang YS (2012) Size effects on properties of NiO nanoparticles grown in alkalisalts. J Phys Chem C 116:26043–26051

    Article  CAS  Google Scholar 

  43. Zhang G, Chen Y, Qu B, Hu L, Mei L, Lei D et al (2012) Synthesis of mesoporous NiO nanospheres as anode materials for lithium ion batteries. Electrochim Acta 80:140–147

    Article  CAS  Google Scholar 

  44. Liu L, Guo Y, Wang Y, Yang X, Wang S, Guo H (2013) Hollow NiO nanotubes synthesized by bio-templates as the high performance anode materials of lithium-ion batteries. Electrochim Acta 114:42–47

    Article  CAS  Google Scholar 

  45. Li Q, Chen Y, Yang T, Lei D, Zhang G, Mei L et al (2013) Preparation of 3D flower-like NiO hierarchical architectures and their electrochemical properties in lithium-ion batteries. Electrochim Acta 90:80–89

    Article  CAS  Google Scholar 

  46. Yao D, Ouyang Y, Jiao X, Ye H, Lei W, Xia X et al (2018) Hierarchical NiO@NiCo2O4 core-shell nanosheet arrays on Ni foam for high-performance electrochemical supercapacitors. Ind Eng Chem Res 57:6246–6256

    Article  CAS  Google Scholar 

  47. Hei J, Su L, Chen S, Ye W, Zhan J, Wang L et al (2019) Enlarging surface/bulk ratios of iO nanoparticles toward high utilization and rate capability for supercapacitors. Part Part Syst Charact 37(1):1900344

    Article  CAS  Google Scholar 

  48. Yesuraj J, Suthanthiraraj SA, Padmaraj O (2019) Materials science in semiconductor processing synthesis, characterization and electrochemical performance of DNA-templated Bi2MoO6 nanoplates for supercapacitor applications. Mater Sci Semicond Process 90:225–235

    Article  CAS  Google Scholar 

  49. Yin S, Wu Y, Xiong Q, Qin H, Chi HZ (2017) Flower-like NiO with a hierarchical and mesoporous structure for supercapacitors. ChemElectro Chem 4:2563–2570

    Article  CAS  Google Scholar 

  50. Yesuraj J, Suthanthiraraj SA (2018) DNA-mediated sonochemical synthesis and characterization of octahedron-like bismuth molybdate as an active electrode material for supercapacitors. JMater Sci Mater Electron 29:5862–5872

    Article  CAS  Google Scholar 

  51. Peng W, Li H, Song S (2017) Synthesis of fluorinated graphene/coal-layered double hydroxide composites as electrode materials for supercapacitors. ACS App Mater Interfaces 9:5204–5212

    Article  CAS  Google Scholar 

  52. Arasi SE, Ranjithkumar R, Devendran P, Krishnakumar M, Arivarasan A (2020) Electrochemical evaluation of binary Ni2V2O7 nanorods as pseudocapacitor electrode material. Ceram Int 46:22709–22717

    Article  CAS  Google Scholar 

  53. Zhang J, Lin J, Wu J, Xu R, Lai M, Gong C et al (2016) Excellent electrochemical performance hierarchical Co3O4@Ni3S2 core/shell nanowire arrays for asymmetric supercapacitors. Electrochim Acta 207:87–96

    Article  CAS  Google Scholar 

  54. Lei Y, Li J, Wang YY, Gu L, Chang YF, Yuan HY, Xiao D (2014) Rapid microwave-assisted green synthesis of 3D hierarchical flower-shaped NiCo2O4 microsphere for high-performance supercapacitor. ACS Appl Mater Interfaces 6:1773–1780

    Article  CAS  PubMed  Google Scholar 

  55. Lu XF, Chen XY, Zhou W, Tong YX, Li GR (2015) α-Fe2O3@PANI Core–shell nanowire arrays as negative electrodes for asymmetric supercapacitors. ACS Appl Mater Interfaces 7:14843–14850

  56. Li L, Cheah Y, Ko Y, The P, Wee G, Wong C, Peng S, Srinivasan M (2013) The facile synthesis of hierarchical porous flower like NiCo2O4 with superior lithium storage properties. J Mater Chem A1:10935–11094

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Revathi Shanmugham.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunhikrishnan, L., Shanmugham, R. & Sivashanmugam, G. Electrochemical performance evaluation of template-assisted and morphology-modified ultra-small-sized NiO as electrodes for supercapacitors. J Solid State Electrochem 25, 1–11 (2021). https://doi.org/10.1007/s10008-021-05013-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05013-w

Keywords

Navigation