Skip to main content
Log in

Graphene-based nanocomposites as sensing elements for the electrochemical detection of pesticides: a review

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Only about 3% of Earth’s water is freshwater out of which only 0.4% is accessible as surface water in the form of lakes, rivers and groundwater. When harmful substances (like organic matter, industrial wastes, pesticides, fertilizers) contaminate freshwater, it becomes a major problem as they may not damage one’s health immediately but can be harmful after long-term exposure. In this context, there is a need to develop sensitive and reliable sensors that are able for in situ measurements of such contaminants. Electrochemical sensors can in situ detect target analytes based on change in current due to redox reaction of an electroactive species with the specific surface at a certain potential. Nanotechnology offers the advantage for manipulating the size and morphology of specific surface at working electrode. Here in this review article, the work done in the last few years in the field of electrochemical detection of pesticides using graphene-based nanocomposites is discussed. This review paper presents summarized work about the methods and materials for developing electrochemical sensors. Sensing mechanism is discussed, and related data is also presented to provide an overview.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schwarzenbach RP, Egli T, Hofstetter TB et al (2010) Global water pollution and human health. Annu Rev Environ Resour 35:109–136. https://doi.org/10.1146/annurev-environ-100809-125342

    Article  Google Scholar 

  2. Sharma S, Bhattacharya A (2017) Drinking water contamination and treatment techniques. Appl Water Sci 7:1043–1067. https://doi.org/10.1007/s13201-016-0455-7

    Article  CAS  Google Scholar 

  3. Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health 8:1402–1419. https://doi.org/10.3390/ijerph8051402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ortiz-Hernández ML, Sánchez-Salinas E, Dantán-González E, Castrejón-Godínez ML (2013) Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. In: Biodegradation - life of science. pp 251–287

  5. Turusov V, Rakitsky V, Tomatis L, Ubiquity DDDT (2002) Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence, and risks. 110:125–128

  6. Lemaire G, Terouanne B, Mauvais P et al (2004) Effect of organochlorine pesticides on human androgen receptor activation in vitro. Toxicol Appl Pharmacol 196:235–246. https://doi.org/10.1016/j.taap.2003.12.011

    Article  CAS  PubMed  Google Scholar 

  7. Tiemann U (2008) In vivo and in vitro effects of the organochlorine pesticides DDT, TCPM, methoxychlor, and lindane on the female reproductive tract of mammals: a review. Reprod Toxicol 25:316–326. https://doi.org/10.1016/j.reprotox.2008.03.002

    Article  CAS  PubMed  Google Scholar 

  8. Yang FW, Li YX, Ren FZ et al (2019) Assessment of the endocrine-disrupting effects of organophosphorus pesticide triazophos and its metabolites on endocrine hormones biosynthesis, transport and receptor binding in silico. Food Chem Toxicol 133:110759. https://doi.org/10.1016/j.fct.2019.110759

    Article  CAS  PubMed  Google Scholar 

  9. Hung DZ, Yang HJ, Li YF et al (2015) The long-term effects of organophosphates poisoning as a risk factor of CVDs: a nationwide population-based cohort study. PLoS One 10:1–15. https://doi.org/10.1371/journal.pone.0137632

    Article  CAS  Google Scholar 

  10. Jamal F, Haque QS, Singh S, Rastogi SK (2016) The influence of organophosphate and carbamate on sperm chromatin and reproductive hormones among pesticide sprayers. Toxicol Ind Health 32:1527–1536. https://doi.org/10.1177/0748233714568175

    Article  CAS  PubMed  Google Scholar 

  11. Samsel A, Seneff S (2013) Glyphosate, pathways to modern diseases II: celiac sprue and gluten intolerance. Interdiscip Toxicol 6:159–184. https://doi.org/10.2478/intox-2013-0026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mnif W, Hassine AIH, Bouaziz A et al (2011) Effect of endocrine disruptor pesticides: a review. Int J Environ Res Public Health 8:2265–2303. https://doi.org/10.3390/ijerph8062265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goad RT, Goad JT, Atieh BH, Gupta RC (2004) Carbofuran-induced endocrine disruption in adult male rats. Toxicol Mech Methods 14:233–239. https://doi.org/10.1080/15376520490434476

    Article  CAS  PubMed  Google Scholar 

  14. Lin JN, Lin CL, Lin MC et al (2015) Increased risk of dementia in patients with acute organophosphate and carbamate poisoning: a nationwide population-based cohort study. Med (United States) 94:1–8. https://doi.org/10.1097/MD.0000000000001187

    Article  Google Scholar 

  15. Li Q, Kobayashi M, Kawada T (2011) Ziram induces apoptosis and necrosis in human immune cells. Arch Toxicol 85:355–361. https://doi.org/10.1007/s00204-010-0586-9

    Article  CAS  PubMed  Google Scholar 

  16. Li Q, Kobayashi M, Kawada T (2015) Carbamate pesticide-induced apoptosis in human T lymphocytes. Int J Environ Res Public Health 12:3633–3645. https://doi.org/10.3390/ijerph120403633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kniewald J, Jakominić M, Tomljenović A et al (2000) Disorders of male rat reproductive tract under the influence of atrazine. J Appl Toxicol 20:61–68. https://doi.org/10.1002/(SICI)1099-1263(200001/02)20:1%3c61::AID-JAT628%3e3.0.CO;2-3

    Article  CAS  PubMed  Google Scholar 

  18. Li YS, He X, Ma K et al (2015) The effect of exposure to atrazine on dopaminergic development in pubertal male SD rats. Birth defects Res Part B - Dev Reprod Toxicol 104:184–189. https://doi.org/10.1002/bdrb.21151

    Article  CAS  Google Scholar 

  19. Ma K, Wu HY, Zhang B et al (2015) Neurotoxicity effects of atrazine-induced SH-SY5Y human dopaminergic neuroblastoma cells via microglial activation. Mol Biosyst 11:2915–2924. https://doi.org/10.1039/c5mb00432b

    Article  CAS  PubMed  Google Scholar 

  20. Hylek EM, Chang YC, Skates SJ et al (2000) Prospective study of the outcomes of ambulatory patients with excessive warfarin anticoagulation. Arch Intern Med 160:1612–1617. https://doi.org/10.1001/archinte.160.11.1612

    Article  CAS  PubMed  Google Scholar 

  21. Lefebvre S, Fourel I, Queffélec S et al (2017) Poisoning by anticoagulant rodenticides in humans and animals: causes and consequences. Poisoning - from specif toxic agents to nov rapid simpl tech anal. https://doi.org/10.5772/intechopen.69955

    Article  Google Scholar 

  22. Chen SK, Edwards CA, Subler S (2001) Effects of the fungicides benomyl, captan and chlorothalonil on soil microbial activity and nitrogen dynamics in laboratory incubations. Soil Biol Biochem 33:1971–1980. https://doi.org/10.1016/S0038-0717(01)00131-6

    Article  CAS  Google Scholar 

  23. Lima TS, A. La-Scalea M, Raminelli C et al (2019) Voltammetric determination of chlorothalonil and its respective reduction mechanism studied by density functional theory. J Solid State Electrochem 23:553–563. https://doi.org/10.1007/s10008-018-4162-1

    Article  CAS  Google Scholar 

  24. Nováková K, Navrátil T, Dytrtová JJ, Chýlková J (2013) The use of copper solid amalgam electrodes for determination of the pesticide thiram. J Solid State Electrochem 17:1517–1528. https://doi.org/10.1007/s10008-013-2035-1

    Article  CAS  Google Scholar 

  25. Cardoso DA, Valle EMA, Codognoto L (2018) Voltammetric studies of the interaction between lead metal ion and the methyl parathion pesticide. J Solid State Electrochem 22:1549–1555. https://doi.org/10.1007/s10008-017-3745-6

    Article  CAS  Google Scholar 

  26. Costa IM, Codognoto L, Valle EMA (2018) Voltammetric and spectroscopic studies of the interaction between copper (II) ions with the pesticide carbendazim and its effect in the soil. J Solid State Electrochem 22:1563–1570. https://doi.org/10.1007/s10008-017-3746-5

    Article  CAS  Google Scholar 

  27. de Araújo GM, Simões FR (2018) Self-assembled films based on polypyrrole and carbon nanotubes composites for the determination of Diuron pesticide. J Solid State Electrochem 22:1439–1448. https://doi.org/10.1007/s10008-017-3807-9

    Article  CAS  Google Scholar 

  28. Montes RHO, Dornellas RM, Silva LAJ et al (2016) Amperometric determination of the insecticide fipronil using batch injection analysis: comparison between unmodified and carbon-nanotube-modified electrodes. J Solid State Electrochem 20:2453–2459. https://doi.org/10.1007/s10008-015-3085-3

    Article  CAS  Google Scholar 

  29. Siswana MP, Ozocmcna KI, Geraldo DA, Nvokong T (2010) Nanostructured nickel (II) phthalocyanine-MWCNTs as viable nanoeomposite platform for electrocatalvtic detection of asulam pesticide at neutral pH conditions. J Solid State Electrochem 14:1351–1358. https://doi.org/10.1007/s10008-009-0958-3

    Article  CAS  Google Scholar 

  30. Lahiri I, Das S, Kang C, Choi W (2011) Application of carbon nanostructures-energy to electronics. Jom 63:70–76. https://doi.org/10.1007/s11837-011-0095-1

    Article  Google Scholar 

  31. Kroto HW, Heath JR, O’Brien SC et al (1985) C60: Buckminsterfullerene. Nature 318:162–163. https://doi.org/10.1038/318162a0

    Article  CAS  Google Scholar 

  32. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  33. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science (80-) 306:666–669. https://doi.org/10.1126/science.1102896

  34. Nasir S, Hussein MZ, Zainal Z, Yusof NA (2018) Carbon-based nanomaterials/allotropes: a glimpse of their synthesis, properties and some applications. Materials (Basel) 11:1–24. https://doi.org/10.3390/ma11020295

    Article  CAS  Google Scholar 

  35. Zhu S, Song Y, Zhao X et al (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8:355–381. https://doi.org/10.1007/s12274-014-0644-3

    Article  CAS  Google Scholar 

  36. Adhikari BR, Govindhan M, Chen A (2015) Carbon nanomaterials based electrochemical sensors/biosensors for the sensitive detection of pharmaceutical and biological compounds. Sensors (Switzerland) 15:22490–22508. https://doi.org/10.3390/s150922490

    Article  CAS  Google Scholar 

  37. Li W, Tan C, Lowe MA et al (2011) Electrochemistry of individual monolayer graphene sheets. ACS Nano 5:2264–2270. https://doi.org/10.1021/nn103537q

  38. Mccreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108:2646–2687. https://doi.org/10.1021/cr068076m

  39. Davies TJ, Hyde ME, Compton RG (2005) Nanotrench arrays reveal insight into graphite electrochemistry. Angew Chemie 117:5251–5256. https://doi.org/10.1002/ange.200462750

    Article  Google Scholar 

  40. He H, Klinowski J, Forster M, Lerf A (1998) A new structural model for graphite oxide. Chem Phys Lett 287:53–56. https://doi.org/10.1016/S0009-2614(98)00144-4

    Article  CAS  Google Scholar 

  41. Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482. https://doi.org/10.1021/jp9731821

    Article  CAS  Google Scholar 

  42. Gao W, Alemany LB, Ci L, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1:403–408. https://doi.org/10.1038/nchem.281

    Article  CAS  PubMed  Google Scholar 

  43. Ambrosi A, Bonanni A, Sofer Z et al (2011) Electrochemistry at chemically modified graphenes. Chem - A Eur J 17:10763–10770. https://doi.org/10.1002/chem.201101117

    Article  CAS  Google Scholar 

  44. Chen D, Tang L, Li J (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39:3157–3180. https://doi.org/10.1039/b923596e

    Article  CAS  PubMed  Google Scholar 

  45. Ignjatović LM, Marković DA, Veselinović DS, Bešić BR (1993) Polarographic behavior and determination of some S-triazine herbicides. Electroanalysis 5:529–533. https://doi.org/10.1002/elan.1140050525

    Article  Google Scholar 

  46. Beňadiková H, Popl M, Jakubíčková V (1983) Polarographic determination of some nitro group-containing pesticides. Collect Czech Chem Commun 48:2636–2643. https://doi.org/10.1135/cccc19832636

  47. Subbadakshmamma M, Reddy SJ (1994) Electrochemical reduction behavior and analysis of some organophosphorous pesticides. 6:521–526. https://doi.org/10.1002/elan.1140060527

  48. Garcia AJR, Barrio AR, Carrazon JMP, Diez LMP (1991) Polarographic study of organochlorine pesticides in micellar solutions 246:293–300

    Google Scholar 

  49. Fayyad M, Alawi M, Issa I (1989) Differential pulse polarographic determination of organochlorine pesticides. Anal Lett 22:1939–1959. https://doi.org/10.1080/00032718908051224

    Article  CAS  Google Scholar 

  50. Tene T, Usca GT, Guevara M et al (2020) Toward large-scale production of oxidized graphene. Nanomaterials 10:1–11. https://doi.org/10.3390/nano10020279

    Article  CAS  Google Scholar 

  51. Georgakilas V, Otyepka M, Bourlinos AB et al (2012) Functionalization of graphene: covalent and non-covalent approach. Chem Rev 112:6156–6214

    Article  CAS  Google Scholar 

  52. Raccichini R, Varzi A, Passerini S, Scrosati B (2015) The role of graphene for electrochemical energy storage. Nat Mater 14:271–279. https://doi.org/10.1038/nmat4170

    Article  CAS  PubMed  Google Scholar 

  53. Moo JGS, Ambrosi A, Bonanni A, Pumera M (2012) Inherent electrochemistry and activation of chemically modified graphenes for electrochemical applications. Chem - An Asian J 7:759–770. https://doi.org/10.1002/asia.201100852

    Article  CAS  Google Scholar 

  54. Mohamed MA, Atty SA, Merey HA et al (2017) Titanium nanoparticles (TiO2)/graphene oxide nanosheets (GO): an electrochemical sensing platform for the sensitive and simultaneous determination of benzocaine in the presence of antipyrine. Analyst 142:3674–3679. https://doi.org/10.1039/c7an01101f

    Article  CAS  PubMed  Google Scholar 

  55. Ravi A, Punith Kumar MK, Rekha MY, Mysore Sridhar Santosh CS (2020) Graphene based nanocomposites: synthesis, properties and application as electrochemical sensors. In: Comprehensive analytical chemistry. pp 1–20

  56. Liu Tao, Su Haichao, Qu Xiangjin et al (2011) Acetylcholinesterase biosensor based on 3-carboxyphenylboronic acid/reduced graphene oxide-gold nanocomposites modified electrode for amperometric detection of organophosphorus and carbamate pesticides. Sensors and Actuators: B Chem 160:1255–1261. https://doi.org/10.1016/j.snb.2011.09.059

    Article  CAS  Google Scholar 

  57. Wang K, Liu Q, Dai L et al (2011) A highly sensitive and rapid organophosphate biosensor based on enhancement of CdS-decorated graphene nanocomposite. Anal Chim Acta 695:84–88. https://doi.org/10.1016/j.aca.2011.03.042

    Article  CAS  PubMed  Google Scholar 

  58. Wang K, Li HN, Wu J et al (2011) TiO2-decorated graphene nanohybrids for fabricating an amperometric acetylcholinesterase biosensor. Analyst 136:3349–3354. https://doi.org/10.1039/c1an15227k

    Article  CAS  PubMed  Google Scholar 

  59. Wang Y, Zhang S, Du D et al (2011) Self assembly of acetylcholinesterase on a gold nanoparticles-graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker. J Mater Chem 21:5319–5325. https://doi.org/10.1039/c0jm03441j

    Article  CAS  Google Scholar 

  60. Li Yanping, Bai Yunfei, Han Gaoyi, Li Miaoyu (2013) Porous-reduced graphene oxide for fabricating an amperometric acetylcholinesterase biosensor. Sensors and Actuators: B Chem 185:706–712. https://doi.org/10.1016/j.snb.2013.05.061

    Article  CAS  Google Scholar 

  61. Li Y, Zhao R, Shi L et al (2017) Acetylcholinesterase biosensor based on electrochemically inducing 3D graphene oxide network/multi-walled carbon nanotube composites for detection of pesticides. RSC Adv 7:53570–53577. https://doi.org/10.1039/c7ra08226f

    Article  CAS  Google Scholar 

  62. Dong J, Liu T, Meng X et al (2012) Amperometric biosensor based on immobilization of acetylcholinesterase via specific binding on biocompatible boronic acid-functionalized Fe@Au magnetic nanoparticles. J Solid State Electrochem 16:3783–3790. https://doi.org/10.1007/s10008-012-1812-6

    Article  CAS  Google Scholar 

  63. Zhang L, Zhang A, Du D, Lin Y (2012) Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides. Nanoscale 4:4674–4679. https://doi.org/10.1039/c2nr30976a

    Article  CAS  PubMed  Google Scholar 

  64. Oliveira TMBF, Fátima Barroso M, Morais S et al (2013) Laccase-Prussian blue film-graphene doped carbon paste modified electrode for carbamate pesticides quantification. Biosens Bioelectron 47:292–299. https://doi.org/10.1016/j.bios.2013.03.026

    Article  CAS  PubMed  Google Scholar 

  65. Oliveira TMBF, Barroso MF, Morais S et al (2014) Sensitive bi-enzymatic biosensor based on polyphenoloxidases-gold nanoparticles-chitosan hybrid film-graphene doped carbon paste electrode for carbamates detection. Bioelectrochemistry 98:20–29. https://doi.org/10.1016/j.bioelechem.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  66. Wu Shuo, Huang Feifei, Lan Xiaoqin et al (2013) Electrochemically reduced graphene oxide and nafion nanocomposite for ultralow potential detection of organophosphate pesticide. Sensors and Actuators: B Chem 177:724–729. https://doi.org/10.1016/j.snb.2012.11.069

    Article  CAS  Google Scholar 

  67. Jeyapragasam T, Saraswathi R, Chen SM, Chen TW (2017) Acetylcholinesterase biosensor for the detection of methyl parathion at an electrochemically reduced graphene oxide-nafion modified glassy carbon electrode. Int J Electrochem Sci 12:4768–4781. https://doi.org/10.20964/2017.06.77

  68. Wu S, Lan X, Cui L et al (2011) Application of graphene for preconcentration and highly sensitive stripping voltammetric analysis of organophosphate pesticide. Anal Chim Acta 699:170–176. https://doi.org/10.1016/j.aca.2011.05.032

    Article  CAS  PubMed  Google Scholar 

  69. Yang L, Wang G, Liu Y (2013) An acetylcholinesterase biosensor based on platinum nanoparticles- carboxylic graphene-nafion-modified electrode for detection of pesticides. Anal Biochem 437:144–149. https://doi.org/10.1016/j.ab.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  70. Yang L, Wang G, Liu Y, Wang M (2013) Development of a biosensor based on immobilization of acetylcholinesterase on NiO nanoparticles–carboxylic graphene–nafion modified electrode for detection of pesticides. Talanta 113:135–141. https://doi.org/10.1016/j.talanta.2013.03.025

    Article  CAS  PubMed  Google Scholar 

  71. Zhai C, Guo Y, Sun X et al (2014) An acetylcholinesterase biosensor based on graphene-gold nanocomposite and calcined layered double hydroxide. Enzyme Microb Technol 58–59:8–13. https://doi.org/10.1016/j.enzmictec.2014.02.004

    Article  CAS  PubMed  Google Scholar 

  72. Zhang Hangyu, Li Zhe-fei, Snyder Alexandra et al (2014) Functionalized graphene oxide for the fabrication of paraoxon biosensors. Analytica Chimica Acta 827:86–94. https://doi.org/10.1016/j.aca.2014.04.014

    Article  CAS  PubMed  Google Scholar 

  73. Zheng Y, Liu Z, Zhan H et al (2015) Development of a sensitive acetylcholinesterase biosensor based on a functionalized graphene-polyvinyl alcohol nanocomposite for organophosphorous pesticide detection. Anal Methods 7:9977–9983. https://doi.org/10.1039/c5ay02666k

    Article  CAS  Google Scholar 

  74. Zheng Y, Liu Z, Zhan H et al (2016) Studies on electrochemical organophosphate pesticide (OP) biosensor design based on ionic liquid functionalized graphene and a Co3O4 nanoparticle modified electrode. Anal Methods 8:5288–5295. https://doi.org/10.1039/c6ay01346e

    Article  CAS  Google Scholar 

  75. Zhou N, Li C, Mo R et al (2016) A graphene/enzyme-based electrochemical sensor for sensitive detection of organophosphorus pesticides. Surf Rev Lett 23:5–7. https://doi.org/10.1142/S0218625X15501036

    Article  CAS  Google Scholar 

  76. Jiao Yancui, Hou Wenjie, Fu Jiayun et al (2017) A nanostructured electrochemical aptasensor for highly sensitive detection of chlorpyrifos. Sensors and Actuators: B Chem 243:1164–1170. https://doi.org/10.1016/j.snb.2016.12.106

    Article  CAS  Google Scholar 

  77. Hondred JA, Breger JC, Alves NJ et al (2018) Printed graphene electrochemical biosensors fabricated by inkjet maskless lithography for rapid and sensitive detection of organophosphates. ACS Appl Mater Interfaces 10:11125–11134. https://doi.org/10.1021/acsami.7b19763

    Article  CAS  PubMed  Google Scholar 

  78. da Silva Martin K.L., Vanzela Heloísa C., Defavari Lucas M., Cesarino Ivana (2018) Determination of carbamate pesticide in food using a biosensor based on reduced graphene oxide and acetylcholinesterase enzyme. Sensors and Actuators: B Chem 277:555–561. https://doi.org/10.1016/j.snb.2018.09.051

    Article  CAS  Google Scholar 

  79. Fu Jiayun, An Xingshuang, Yao Yao et al (2019) Electrochemical aptasensor based on one step co-electrodeposition of aptamer and GO-CuNPs nanocomposite for organophosphorus pesticide detection. Sensors and Actuators: B Chem 287:503–509. https://doi.org/10.1016/j.snb.2019.02.057

    Article  CAS  Google Scholar 

  80. Li Y, Li Y, Yu X, Sun Y (2019) Electrochemical determination of carbofuran in tomatoes by a concanavalin A (Con A) polydopamine (PDA)-reduced graphene oxide (RGO)-gold nanoparticle (GNP) glassy carbon electrode (GCE) with immobilized acetylcholinesterase (AChE). Anal Lett 52:2283–2299. https://doi.org/10.1080/00032719.2019.1609490

    Article  CAS  Google Scholar 

  81. Tan X, Liu Y, Zhang T et al (2019) Ultrasensitive electrochemical detection of methyl parathion pesticide based on cationic water-soluble pillar[5]arene and reduced graphene nanocomposite. RSC Adv 9:345–353. https://doi.org/10.1039/C8RA08555B

    Article  CAS  Google Scholar 

  82. Wang Guangcan, Tan Xincheng, Zhou Qing et al (2014) Synthesis of highly dispersed zinc oxide nanoparticles on carboxylic graphene for development a sensitive acetylcholinesterase biosensor. Sensors and Actuators: B Chem 190:730–736. https://doi.org/10.1016/j.snb.2013.09.042

    Article  CAS  Google Scholar 

  83. Yang Y, Asiri AM, Du D, Lin Y (2014) Acetylcholinesterase biosensor based on a gold nanoparticle-polypyrrole-reduced graphene oxide nanocomposite modified electrode for the amperometric detection of organophosphorus pesticides. Analyst 139:3055–3060. https://doi.org/10.1039/c4an00068d

    Article  CAS  PubMed  Google Scholar 

  84. Ferrari AC, Bonaccorso F, Fal’ko V et al (2015) Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7:4598–4810. https://doi.org/10.1039/c4nr01600a

    Article  CAS  PubMed  Google Scholar 

  85. Gong J, Miao X, Zhou T, Zhang L (2011) An enzymeless organophosphate pesticide sensor using Au nanoparticle-decorated graphene hybrid nanosheet as solid-phase extraction. Talanta 85:1344–1349. https://doi.org/10.1016/j.talanta.2011.06.016

    Article  CAS  PubMed  Google Scholar 

  86. Li Z, Zhang H, Ge X et al (2013) A nanocomposite of copper(ii) functionalized graphene and application for sensing sulfurated organophosphorus pesticides. New J Chem 37:3956–3963. https://doi.org/10.1039/c3nj00528c

    Article  CAS  Google Scholar 

  87. Li Y, Xu M, Li P et al (2014) Nonenzymatic sensing of methyl parathion based on graphene/gadolinium Prussian Blue analogue nanocomposite modified glassy carbon electrode. Anal Methods 6:2157–2162. https://doi.org/10.1039/c3ay41820k

    Article  CAS  Google Scholar 

  88. Tan Xuecai, Hu Qi, Wu Jiawen et al (2015) Electrochemical sensor based on molecularly imprinted polymer reduced graphene oxide and gold nanoparticles modified electrode for detection of carbofuran. Sensors and Actuators: B Chem 220:216–221. https://doi.org/10.1016/j.snb.2015.05.048

    Article  CAS  Google Scholar 

  89. Govindasamy M, Chen SM, Mani V et al (2017) Nanocomposites composed of layered molybdenum disulfide and graphene for highly sensitive amperometric determination of methyl parathion. Microchim Acta 184:725–733. https://doi.org/10.1007/s00604-016-2062-6

    Article  CAS  Google Scholar 

  90. Shams N, Lim HN, Hajian R et al (2016) A promising electrochemical sensor based on Au nanoparticles decorated reduced graphene oxide for selective detection of herbicide diuron in natural waters. J Appl Electrochem 46:655–666. https://doi.org/10.1007/s10800-016-0950-4

    Article  CAS  Google Scholar 

  91. Zhang Y, Fa H, bao, He B, et al (2017) Electrochemical biomimetic sensor based on oxime group-functionalized gold nanoparticles and nitrogen-doped graphene composites for highly selective and sensitive dimethoate determination. J Solid State Electrochem 21:2117–2128. https://doi.org/10.1007/s10008-017-3560-0

    Article  CAS  Google Scholar 

  92. Pop A, Lung S, Orha C, Manea F (2018) Silver/graphene-modified boron doped diamond electrode for selective detection of carbaryl and paraquat from water. Int J Electrochem Sci 13:2651–2660. https://doi.org/10.20964/2018.03.02

  93. Lu J, Sun Y, Waterhouse GIN, Xu Z (2018) A voltammetric sensor based on the use of reduced graphene oxide and hollow gold nanoparticles for the quantification of methyl parathion and parathion in agricultural products. Adv Polym Technol 37:3629–3638. https://doi.org/10.1002/adv.22147

    Article  CAS  Google Scholar 

  94. Hashemi P, Karimian N, Khoshsafar H et al (2019) Reduced graphene oxide decorated on Cu/CuO-Ag nanocomposite as a high-performance material for the construction of a non-enzymatic sensor: application to the determination of carbaryl and fenamiphos pesticides. Mater Sci Eng C 102:764–772. https://doi.org/10.1016/j.msec.2019.05.010

    Article  CAS  Google Scholar 

  95. Du D, Liu J, Zhang X et al (2011) One-step electrochemical deposition of a graphene-ZrO2 nanocomposite: preparation, characterization and application for detection of organophosphorus agents. J Mater Chem 21:8032–8037. https://doi.org/10.1039/c1jm10696a

    Article  CAS  Google Scholar 

  96. Gong Jingming, Miao Xingju, Wan Huifang, Song Dandan (2012) Facile synthesis of zirconia nanoparticles-decorated graphene hybrid nanosheets for an enzymeless methyl parathion sensor. Sensors and Actuators: B Chem 162:341–347. https://doi.org/10.1016/j.snb.2011.12.094

    Article  CAS  Google Scholar 

  97. Wang M, Huang J, Wang M et al (2014) Electrochemical nonenzymatic sensor based on CoO decorated reduced graphene oxide for the simultaneous determination of carbofuran and carbaryl in fruits and vegetables. Food Chem 151:191–197. https://doi.org/10.1016/j.foodchem.2013.11.046

    Article  CAS  PubMed  Google Scholar 

  98. Liu FM, Du YQ, Cheng YM et al (2016) A selective and sensitive sensor based on highly dispersed cobalt porphyrin-Co3O4-graphene oxide nanocomposites for the detection of methyl parathion. J Solid State Electrochem 20:599–607. https://doi.org/10.1007/s10008-015-3079-1

    Article  CAS  Google Scholar 

  99. Fu J, Tan XH, Li YH, Song XJ (2016) A nanosilica/exfoliated graphene composite film-modified electrode for sensitive detection of methyl parathion. Chinese Chem Lett 27:1541–1546. https://doi.org/10.1016/j.cclet.2016.07.007

    Article  CAS  Google Scholar 

  100. Shabani-Nooshabadi M, Roostaee M (2016) Modification of carbon paste electrode with NiO/graphene oxide nanocomposite and ionic liquids for fabrication of high sensitive voltammetric sensor on sulfamethoxazole analysis. J Mol Liq 220:329–333. https://doi.org/10.1016/j.molliq.2016.05.001

    Article  CAS  Google Scholar 

  101. Song B, Cao W, Wang Y (2016) A methyl parathion electrochemical sensor based on Nano-TiO2, graphene composite film modified electrode. Fullerenes Nanotub Carbon Nanostruct 24:435–440. https://doi.org/10.1080/1536383X.2016.1174696

    Article  CAS  Google Scholar 

  102. Muthumariappan S, Vedhi C (2017) Nonenzymatic sensing of methyl parathion based on RGO-Zno nanocomposite modified glassy carbon electrode. IOSR J Appl Chem 10:55–64. https://doi.org/10.9790/5736-1009035564

    Article  CAS  Google Scholar 

  103. Mafuwe PT, Moyo M, Mugadza T et al (2019) Cobalt oxide nanoparticles anchored polyaniline-appended cobalt tetracarboxy phthalocyanine, modified glassy carbon electrode for facile electrocatalysis of amitrole. J Solid State Electrochem 23:285–294. https://doi.org/10.1007/s10008-018-4131-8

    Article  CAS  Google Scholar 

  104. Safdari M, Al-Haik MS (2018) A review on polymeric nanocomposites: effect of hybridization and synergy on electrical properties. Elsevier Inc

  105. Arvand M, Vaziri M, Zanjanchi MA (2012) Electrochemical behavior and differential pulse voltammetric detection of thiobencarb on 2-(4-((4-ethoxyphenyl)diazenyl) phenylamino)ethanol-modified carbon paste electrode. J Solid State Electrochem 16:1151–1159. https://doi.org/10.1007/s10008-011-1500-y

    Article  CAS  Google Scholar 

  106. Xu M, Zhu J, Su H et al (2012) Electrochemical determination of methyl parathion using poly(malachite green)/graphene nanosheets-nafion composite film-modified glassy carbon electrode. J Appl Electrochem 42:509–516. https://doi.org/10.1007/s10800-012-0425-1

    Article  CAS  Google Scholar 

  107. Yang S, Luo S, Liu C, Wei W (2012) Direct synthesis of graphene-chitosan composite and its application as an enzymeless methyl parathion sensor. Colloids Surf B Biointerfaces 96:75–79. https://doi.org/10.1016/j.colsurfb.2012.03.007

    Article  CAS  PubMed  Google Scholar 

  108. Liu Y, Yang S, Niu W (2013) Simple, rapid and green one-step strategy to synthesis of graphene/carbon nanotubes/chitosan hybrid as solid-phase extraction for square-wave voltammetric detection of methyl parathion. Colloids Surf B Biointerfaces 108:266–270. https://doi.org/10.1016/j.colsurfb.2013.03.003

    Article  CAS  PubMed  Google Scholar 

  109. Xue R, Kang TF, Lu LP, Cheng SY (2012) Electrochemical sensor based on the graphene-nafion matrix for sensitive determination of organophosphorus pesticides. Anal Lett 46:131–141. https://doi.org/10.1080/00032719.2012.706852

    Article  CAS  Google Scholar 

  110. Zhao L, Zhao F, Zeng B (2013) Electrochemical determination of methyl parathion using a molecularly imprinted polymer-ionic liquidgraphene composite film coated electrode. Sensors and Actuators: B Chem 176:818–824. https://doi.org/10.1016/j.snb.2012.10.003

  111. Xue X, Wei Q, Wu D et al (2014) Determination of methyl parathion by a molecularly imprinted sensor based on nitrogen doped graphene sheets. Electrochim Acta 116:366–371. https://doi.org/10.1016/j.electacta.2013.11.075

    Article  CAS  Google Scholar 

  112. Wu Lihua, Lei Wu, Han Zhen et al (2015) A novel non-enzyme amperometric platform based on poly(3-methylthiophene)/nitrogen doped graphene modified electrode for determination of trace amounts of pesticide phoxim. Sensors and Actuators: B Chem 206:495–501. https://doi.org/10.1016/j.snb.2014.09.098

    Article  CAS  Google Scholar 

  113. Hou X, Liu X, Li Z et al (2019) Electrochemical determination of methyl parathion based on pillar[5]arene@AuNPs@reduced graphene oxide hybrid nanomaterials. New J Chem 43:13048–13057. https://doi.org/10.1039/c9nj02901j

    Article  CAS  Google Scholar 

  114. Migliorini FL, Sanfelice RC, Mercante LA et al (2020) Electrochemical sensor based on polyamide 6/polypyrrole electrospun nanofibers coated with reduced graphene oxide for malathion pesticide detection. Materials Research Express 7:015601.https://doi.org/10.1088/2053-1591/ab5744

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanju Tanwar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanwar, S., Mathur, D. Graphene-based nanocomposites as sensing elements for the electrochemical detection of pesticides: a review. J Solid State Electrochem 25, 2145–2159 (2021). https://doi.org/10.1007/s10008-021-04990-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-04990-2

Keywords

Navigation